Li Yufan, Gerritsma Fabian A, Kurdi Samer, Codreanu Nina, Gröblacher Simon, Hanson Ronald, Norte Richard, van der Sar Toeno
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CJ, The Netherlands.
Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft 2628CD, The Netherlands.
ACS Photonics. 2023 May 25;10(6):1859-1865. doi: 10.1021/acsphotonics.3c00259. eCollection 2023 Jun 21.
Magnetic imaging with nitrogen-vacancy (NV) spins in diamond is becoming an established tool for studying nanoscale physics in condensed matter systems. However, the optical access required for NV spin readout remains an important hurdle for operation in challenging environments such as millikelvin cryostats or biological systems. Here, we demonstrate a scanning-NV sensor consisting of a diamond nanobeam that is optically coupled to a tapered optical fiber. This nanobeam sensor combines a natural scanning-probe geometry with high-efficiency through-fiber optical excitation and readout of the NV spins. We demonstrate through-fiber optically interrogated electron spin resonance and proof-of-principle magnetometry operation by imaging spin waves in an yttrium-iron-garnet thin film. Our scanning-nanobeam sensor can be combined with nanophotonic structuring to control the light-matter interaction strength and has potential for applications that benefit from all-fiber sensor access, such as millikelvin systems.
利用金刚石中的氮空位(NV)自旋进行磁成像正成为研究凝聚态物质系统中纳米尺度物理的一种成熟工具。然而,NV自旋读出所需的光学通道仍然是在诸如毫开尔文低温恒温器或生物系统等具有挑战性的环境中操作的一个重要障碍。在此,我们展示了一种由金刚石纳米束组成的扫描NV传感器,该纳米束与一根锥形光纤进行光学耦合。这种纳米束传感器将自然的扫描探针几何结构与高效的通过光纤对NV自旋进行光学激发和读出相结合。我们通过对钇铁石榴石薄膜中的自旋波进行成像,展示了通过光纤进行光学询问的电子自旋共振和原理验证磁强计操作。我们的扫描纳米束传感器可以与纳米光子结构相结合,以控制光与物质的相互作用强度,并具有适用于受益于全光纤传感器通道的应用潜力,例如毫开尔文系统。