Suppr超能文献

用3D打印聚己内酯(PCL)结构增强水凝胶可在压缩条件下增加细胞数量并促进软骨细胞外基质生成。

Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression.

作者信息

Alizadeh Sardroud Hamed, Chen Xiongbiao, Eames B Frank

机构信息

Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

出版信息

J Funct Biomater. 2023 Jun 7;14(6):313. doi: 10.3390/jfb14060313.

Abstract

Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.

摘要

水凝胶在软骨组织工程(CTE)中显示出前景,因为它能支持软骨细胞并维持其表型以及细胞外基质(ECM)的产生。然而,在长时间的机械力作用下,水凝胶在结构上可能不稳定,导致细胞和ECM流失。此外,长时间的机械加载可能会改变软骨ECM分子的产生,包括糖胺聚糖(GAGs)和2型胶原蛋白(Col2),特别是会刺激以1型胶原蛋白(Col1)分泌为典型特征的纤维软骨产生负面影响。用3D打印的聚己内酯(PCL)结构增强水凝胶,为提高浸渍软骨细胞的结构完整性和力学响应提供了解决方案。本研究旨在评估压缩持续时间和PCL增强对水凝胶浸渍软骨细胞性能的影响。结果表明,较短的加载时间对3D生物打印水凝胶中的细胞数量和ECM产生没有显著影响,但与未加载条件相比,较长的加载时间往往会减少细胞数量和ECM。与未增强的水凝胶相比,PCL增强在机械压缩下增加了细胞数量。然而,增强构建体似乎产生了更多纤维软骨样的、Col1阳性的ECM。这些发现表明,增强水凝胶构建体通过保留更高的细胞数量和ECM含量,在体内软骨再生和缺损治疗方面具有潜力。为了进一步增强透明软骨ECM的形成,未来的研究应集中在调整增强构建体的力学性能和探索机械转导途径上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f8/10299059/d7623ed38a70/jfb-14-00313-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验