Suppr超能文献

使用可穿戴多传感器系统检测新生儿癫痫发作。

Neonatal Seizure Detection Using a Wearable Multi-Sensor System.

作者信息

Chen Hongyu, Wang Zaihao, Lu Chunmei, Shu Feng, Chen Chen, Wang Laishuan, Chen Wei

机构信息

Greater Bay Area Institute of Precision Medicine, Guangzhou 511466, China.

School of Information Science and Technology, Fudan University, Shanghai 200438, China.

出版信息

Bioengineering (Basel). 2023 May 29;10(6):658. doi: 10.3390/bioengineering10060658.

Abstract

Neonatal seizure is an important clinical symptom of brain dysfunction, which is more common in infancy than in childhood. At present, video electroencephalogram (VEEG) technology is widely used in clinical practice. However, video electroencephalogram technology has several disadvantages. For example, the wires connecting the medical instruments may interfere with the infant's movement and the gel patch electrode or disk electrode commonly used to monitor EEG may cause skin allergies or even tears. For the above reasons, we developed a wearable multi-sensor platform for newborns to collect physiological and movement signals. In this study, we designed a second-generation multi-sensor platform and developed an automatic detection algorithm for neonatal seizures based on ECG, respiration and acceleration. Data for 38 neonates were recorded at the Children's Hospital of Fudan University in Shanghai. The total recording time was approximately 300 h. Four of the patients had seizures during data collection. The total recording time for the four patients was approximately 34 h, with 30 seizure episodes recorded. These data were evaluated by the algorithm. To evaluate the effectiveness of combining ECG, respiration and movement, we compared the performance of three types of seizure detectors. The first detector included features from ECG, respiration and acceleration records; the second detector incorporated features based on respiratory movement from respiration and acceleration records; and the third detector used only ECG-based features from ECG records. Our study illustrated that, compared with the detector utilizing individual modal features, multi-modal feature detectors could achieve favorable overall performance, reduce false alarm rates and give higher F-measures.

摘要

新生儿惊厥是脑功能障碍的重要临床症状,在婴儿期比儿童期更常见。目前,视频脑电图(VEEG)技术在临床实践中被广泛应用。然而,视频脑电图技术存在一些缺点。例如,连接医疗仪器的电线可能会干扰婴儿的活动,而常用于监测脑电图的凝胶贴片电极或圆盘电极可能会导致皮肤过敏甚至皮肤破损。基于上述原因,我们开发了一种用于新生儿的可穿戴多传感器平台,以收集生理和运动信号。在本研究中,我们设计了第二代多传感器平台,并开发了一种基于心电图、呼吸和加速度的新生儿惊厥自动检测算法。在上海复旦大学附属儿科医院记录了38名新生儿的数据。总记录时间约为300小时。其中4名患者在数据收集期间发生了惊厥。这4名患者的总记录时间约为34小时,记录到30次惊厥发作。这些数据由该算法进行评估。为了评估结合心电图、呼吸和运动的有效性,我们比较了三种惊厥检测器的性能。第一种检测器包括心电图、呼吸和加速度记录中的特征;第二种检测器结合了基于呼吸和加速度记录中的呼吸运动的特征;第三种检测器仅使用心电图记录中基于心电图的特征。我们的研究表明,与利用单个模态特征的检测器相比,多模态特征检测器可以实现良好的整体性能,降低误报率并给出更高的F值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef5/10294985/d85448563ab3/bioengineering-10-00658-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验