CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France.
Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France.
Biomolecules. 2023 Jun 7;13(6):959. doi: 10.3390/biom13060959.
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
铁载体是许多生物合成的小分子金属螯合剂,用于获取铁。这些次生代谢产物在地球上广泛存在,由于其产生代表了同化铁的主要策略,因此它们在生物之间的正、负相互作用中都起着重要作用。此外,铁载体在生物技术中被用于医学、农业和环境等多个领域的各种应用。非天然铁载体类似物的产生为创造新的天然螯合生物分子提供了新的机会,这些分子可以提供新的特性来扩展应用。本文综述了组合生物合成中用于生成铁载体类似物的主要策略。我们首先简要概述了铁载体的生物合成,然后描述了用于在铁载体生物合成途径中产生多样性的策略,即前体定向生物合成、合成或异源途径的设计以及酶工程。此外,本文还重点介绍了用于提高细胞铁载体产量的工程策略,以促进其下游利用。