Cassier-Chauvat Corinne, Marceau Fanny, Farci Sandrine, Ouchane Soufian, Chauvat Franck
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France.
Antioxidants (Basel). 2023 May 31;12(6):1199. doi: 10.3390/antiox12061199.
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (, , and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms ( and do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
从细菌到植物和人类,谷胱甘肽系统在细胞抵御代谢、氧化和金属应激方面发挥着多效性作用。谷胱甘肽(GSH),即γ-L-谷氨酰-L-半胱氨酰-甘氨酸亲核三肽,是该系统的核心成分,在大多数生物体的氧化还原稳态、解毒和铁代谢中发挥作用。GSH能直接清除多种活性氧(ROS),如单线态氧、超氧阴离子、过氧化氢、羟基自由基、一氧化氮和碳自由基。它还作为多种酶的辅助因子,如谷氧还蛋白(Grxs)、谷胱甘肽过氧化物酶(Gpxs)、谷胱甘肽还原酶(GR)和谷胱甘肽-S-转移酶(GSTs),这些酶在细胞解毒中起关键作用。本综述总结了在选定的模式生物(大肠杆菌、酿酒酵母、拟南芥和人类)中关于GSH系统(GSH、GSH衍生代谢物和GSH依赖性酶)的已知信息,出于以下原因重点关注蓝藻。蓝藻在环境方面至关重要且在生物技术上具有重要意义,被认为进化出了光合作用和GSH系统以保护自身免受其活跃的光合自养代谢产生的ROS的伤害。此外,蓝藻合成GSH衍生代谢物麦角硫因和植物螯合肽,它们分别在人类和植物的细胞解毒中起关键作用。蓝藻还合成无硫醇的GSH同系物眼氨酸和去甲眼氨酸,它们可作为人类各种疾病的生物标志物。因此,蓝藻非常适合使用遗传方法(缺失/过量表达)深入分析GSH系统各成分的作用/特异性/冗余性,而这对其他模式生物来说几乎不可行(大肠杆菌和酿酒酵母不合成麦角硫因,而植物和人类分别从土壤和饮食中获取它)。