Suppr超能文献

考虑交互性和主题性的社交网络用户实时影响力排名算法

User Real-Time Influence Ranking Algorithm of Social Networks Considering Interactivity and Topicality.

作者信息

Li Zhaohui, Piao Wenjia, Sun Zhengyi, Wang Lin, Wang Xiaoqian, Li Wenli

机构信息

School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China.

Graduate School of Information, Waseda University, Kitakyushu 808-0135, Japan.

出版信息

Entropy (Basel). 2023 Jun 12;25(6):926. doi: 10.3390/e25060926.

Abstract

At present, the existing influence evaluation algorithms often ignore network structure attributes, user interests and the time-varying propagation characteristics of influence. To address these issues, this work comprehensively discusses users' own influence, weighted indicators, users' interaction influence and the similarity between user interests and topics, thus proposing a dynamic user influence ranking algorithm called UWUSRank. First, we determine the user's own basic influence based on their activity, authentication information and blog response. This improves the problem of poor objectivity of initial value on user influence evaluation when using PageRank to calculate user influence. Next, this paper mines users' interaction influence by introducing the propagation network properties of Weibo (a Twitter-like service in China) information and scientifically quantifies the contribution value of followers' influence to the users they follow according to different interaction influences, thereby solving the drawback of equal value transfer of followers' influence. Additionally, we analyze the relevance of users' personalized interest preferences and topic content and realize real-time monitoring of users' influence at various time periods during the process of public opinion dissemination. Finally, we conduct experiments by extracting real Weibo topic data to verify the effectiveness of introducing each attribute of users' own influence, interaction timeliness and interest similarity. Compared to TwitterRank, PageRank and FansRank, the results show that the UWUSRank algorithm improves the rationality of user ranking by 9.3%, 14.2%, and 16.7%, respectively, which proves the practicality of the UWUSRank algorithm. This approach can serve as a guide for research on user mining, information transmission methods, and public opinion tracking in social network-related areas.

摘要

目前,现有的影响力评估算法往往忽略网络结构属性、用户兴趣以及影响力的时变传播特性。为解决这些问题,本文全面探讨了用户自身影响力、加权指标、用户交互影响力以及用户兴趣与话题之间的相似度,从而提出了一种名为UWUSRank的动态用户影响力排名算法。首先,我们根据用户的活跃度、认证信息和博客回复来确定用户自身的基本影响力。这改进了在使用PageRank计算用户影响力时,用户影响力评估初始值客观性较差的问题。接下来,本文通过引入微博(中国类似推特的服务)信息的传播网络属性来挖掘用户的交互影响力,并根据不同的交互影响力科学地量化关注者影响力对其关注对象的贡献值,从而解决了关注者影响力等价值传递的弊端。此外,我们分析用户个性化兴趣偏好与话题内容的相关性,并在舆情传播过程中实现对用户在各个时间段影响力的实时监测。最后,我们通过提取真实的微博话题数据进行实验,以验证引入用户自身影响力、交互时效性和兴趣相似度各属性的有效性。与TwitterRank、PageRank和FansRank相比,结果表明UWUSRank算法分别将用户排名的合理性提高了9.3%、14.2%和16.7%,这证明了UWUSRank算法的实用性。该方法可为社交网络相关领域的用户挖掘、信息传播方式及舆情跟踪研究提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7b/10297424/c4dc73f9e917/entropy-25-00926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验