Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
Phys Chem Chem Phys. 2023 Jul 12;25(27):18023-18029. doi: 10.1039/d3cp01963b.
The electron-detachment energy is measured by the ionization potential (IP). As a result, it is a fundamental, observable and important molecular electronic signature in photoelectron spectroscopy. A precise theoretical prediction of electron-detachment energies or ionization potentials is essential for organic optoelectronic systems like transistors, solar cells, or light-emitting diodes. In this work, we benchmark the performance of the recently presented IP variant of the equation-of-motion pair coupled cluster doubles (IP-EOM-pCCD) model to determine IPs. Specifically, the predicted ionization energies are compared to experimental results and higher-order coupled cluster theories based on statistically assessing 201 electron-detached states of 41 organic molecules for three different molecular orbital basis sets and two sets of particle-hole operators. While IP-EOM-pCCD features a reasonable spread and skewness of ionization energies, its mean error and standard deviation differ by up to 1.5 eV from reference data. Our study, thus, highlights the importance of dynamical correlation to reliably predict IPs from a pCCD reference function in small organic molecules.
电子亲合能是通过电离能(IP)来测量的。因此,它是光电电子能谱中一种基本的、可观测的和重要的分子电子特征。对于晶体管、太阳能电池或发光二极管等有机光电系统,准确预测电子亲合能或电离能对于电子亲合能或电离能的精确理论预测至关重要。在这项工作中,我们基准测试了最近提出的电子运动对耦合簇双激发(IP-EOM-pCCD)模型的 IP 变体在确定 IP 方面的性能。具体来说,将预测的电离能与实验结果和基于统计评估三个不同分子轨道基组和两组粒子-空穴算符的 41 种有机分子的 201 种电子分离态的更高阶耦合簇理论进行了比较。虽然 IP-EOM-pCCD 具有合理的电离能分布和偏度,但与参考数据相比,其平均误差和标准偏差相差高达 1.5 eV。因此,我们的研究强调了在小有机分子中,从 pCCD 参考函数中可靠地预测 IP 时,动力学相关性的重要性。