Zhao Nan, Zhang Hanwen, Yang Shuhong, Sun Yisheng, Zhao Ganggang, Fan Wenjun, Yan Zheng, Lin Jian, Wan Caixia
Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA.
School of Ecology and Environment, Zhengzhou University, 100 Kexue Blvd, Zhengzhou, Henan Province, 450001, China.
Small. 2023 Oct;19(43):e2300242. doi: 10.1002/smll.202300242. Epub 2023 Jun 28.
Graphene with a 3D porous structure is directly laser-induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass-based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface-functionalizing cellulose with lignin-based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well-defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on-chip and paper-based applications. The biopaper-based electronic devices, including the all-solid-state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low-cost fabrication of multifunctional graphene-based electronics from lignocellulose-based biopaper.
在环境条件下,具有三维多孔结构的石墨烯直接在木质纤维素生物纸上通过激光诱导而成,并进一步用于多功能生物质基柔性电子器件的研究。通过用木质素基环氧丙烯酸酯(LBEA)对纤维素进行表面功能化,制备出了机械强度高、柔韧性好且防水的生物纸。与纯纤维素生物纸相比,这种复合生物纸的拉伸强度提高了两倍之多,并且具有出色的防水性能。直接激光写入(DLW)可在一步中快速从生物纸诱导出多孔石墨烯。多孔石墨烯呈现出相互连接的碳网络、清晰的石墨烯区域以及高电导率(例如,约每平方3Ω),其可通过木质素前体、负载量以及激光条件进行调节。原位嵌入多孔石墨烯的生物纸易于制成用于芯片上和纸质应用的柔性电子器件。基于生物纸的电子器件,包括全固态平面超级电容器、电化学和应变生物传感器以及焦耳加热器,都表现出优异的性能。这项研究展示了从木质纤维素基生物纸简便、通用且低成本地制造多功能石墨烯基电子产品的方法。