Suppr超能文献

基于成像的筛选鉴定出白念珠菌翻译起始因子复合物的调节剂。

Imaging-Based Screening Identifies Modulators of the Translation Initiation Factor Complex in Candida albicans.

机构信息

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Antimicrob Agents Chemother. 2023 Jul 18;67(7):e0050323. doi: 10.1128/aac.00503-23. Epub 2023 Jun 29.

Abstract

Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC values ranging from 0.2 to 150 μM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified as the target of NSC 697923 in C. albicans.

摘要

真菌病原体,如白色念珠菌,可以引起严重的人类疾病。由于常见抗真菌疗法的耐药率很高,因此治疗念珠菌血症变得复杂。此外,由于必需的哺乳动物和真菌蛋白之间存在保守性,许多抗真菌化合物与宿主毒性相关。一种有吸引力的新抗菌药物开发方法是针对毒力因子:对于生物体在人类宿主中引起疾病所必需的非必需过程。这种方法扩大了潜在的靶标空间,同时降低了耐药性的选择性压力,因为这些靶标对于生存力不是必需的。在白色念珠菌中,一个关键的毒力因子是向菌丝形态转变的能力。我们开发了一种高通量图像分析管道,能够在单细胞水平上区分白色念珠菌中的酵母和丝状生长。基于这种表型测定,我们筛选了 FDA 药物再利用库中的 2017 种化合物,以确定它们抑制丝状生长的能力,并鉴定出 33 种化合物,其对白色念珠菌菌丝过渡的 IC 值范围为 0.2 至 150 μM。多种化合物显示出苯磺酰胺化学型,促使进一步分析。在这些苯磺酰胺中,NSC 697923 显示出最高的疗效,并且通过选择耐药突变体,我们确定了在白色念珠菌中 NSC 697923 的靶标。

相似文献

1
Imaging-Based Screening Identifies Modulators of the Translation Initiation Factor Complex in Candida albicans.
Antimicrob Agents Chemother. 2023 Jul 18;67(7):e0050323. doi: 10.1128/aac.00503-23. Epub 2023 Jun 29.
2
Imaging-based screening identifies modulators of the translation initiation factor complex in .
bioRxiv. 2023 Apr 19:2023.04.19.537517. doi: 10.1101/2023.04.19.537517.
4
Susceptibility of Candida albicans to new synthetic sulfone derivatives.
Arch Pharm (Weinheim). 2015 Feb;348(2):132-43. doi: 10.1002/ardp.201400360. Epub 2015 Jan 14.
7
Candida albicans Mediates Endocytosis and Has Subsequent Roles in Cell Wall Integrity, Morphological Switching, and Tissue Invasion.
Microbiol Spectr. 2022 Apr 27;10(2):e0188021. doi: 10.1128/spectrum.01880-21. Epub 2022 Mar 2.
9
The spliceosome impacts morphogenesis in the human fungal pathogen .
mBio. 2024 Aug 14;15(8):e0153524. doi: 10.1128/mbio.01535-24. Epub 2024 Jul 9.
10
Candida albicans Contributes to Efficient Endocytosis, Cell Wall Integrity, Filamentation, and Virulence.
mSphere. 2021 Oct 27;6(5):e0070721. doi: 10.1128/mSphere.00707-21. Epub 2021 Sep 29.

引用本文的文献

1
The spliceosome impacts morphogenesis in the human fungal pathogen .
mBio. 2024 Aug 14;15(8):e0153524. doi: 10.1128/mbio.01535-24. Epub 2024 Jul 9.
2
Going fishing: how to get what you want from a fungal genetic screen.
mSphere. 2024 Jul 30;9(7):e0063823. doi: 10.1128/msphere.00638-23. Epub 2024 Jul 3.
3
Advanced genetic techniques in fungal pathogen research.
mSphere. 2024 Apr 23;9(4):e0064323. doi: 10.1128/msphere.00643-23. Epub 2024 Mar 12.

本文引用的文献

1
Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation.
Nat Methods. 2022 Nov;19(11):1438-1448. doi: 10.1038/s41592-022-01639-4. Epub 2022 Oct 17.
2
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
3
E-site drug specificity of the human pathogen ribosome.
Sci Adv. 2022 May 27;8(21):eabn1062. doi: 10.1126/sciadv.abn1062. Epub 2022 May 25.
6
Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2105815118.
7
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
Repurposing Kinase Inhibitor Bay 11-7085 to Combat and Biofilms.
Front Pharmacol. 2021 May 5;12:675300. doi: 10.3389/fphar.2021.675300. eCollection 2021.
9
Mortality Trends in Risk Conditions and Invasive Mycotic Disease in the United States, 1999-2018.
Clin Infect Dis. 2022 Jan 29;74(2):309-318. doi: 10.1093/cid/ciab336.
10
Global translational landscape of the Candida albicans morphological transition.
G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkaa043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验