John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK.
Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
Commun Biol. 2023 Jun 29;6(1):678. doi: 10.1038/s42003-023-05041-4.
Genome-wide association studies identified several disease-causing mutations in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the contribution of genetic variants to pathway disturbances and their cell type-specific variations, especially in glia, is poorly understood. We integrated ALS GWAS-linked gene networks with human astrocyte-specific multi-omics datasets to elucidate pathognomonic signatures. It predicts that KIF5A, a motor protein kinesin-1 heavy-chain isoform, previously detected only in neurons, can also potentiate disease pathways in astrocytes. Using postmortem tissue and super-resolution structured illumination microscopy in cell-based perturbation platforms, we provide evidence that KIF5A is present in astrocyte processes and its deficiency disrupts structural integrity and mitochondrial transport. We show that this may underly cytoskeletal and trafficking changes in SOD1 ALS astrocytes characterised by low KIF5A levels, which can be rescued by c-Jun N-terminal Kinase-1 (JNK1), a kinesin transport regulator. Altogether, our pipeline reveals a mechanism controlling astrocyte process integrity, a pre-requisite for synapse maintenance and suggests a targetable loss-of-function in ALS.
全基因组关联研究在神经退行性疾病中发现了几种致病突变,包括肌萎缩侧索硬化症(ALS)。然而,遗传变异对通路紊乱及其细胞类型特异性变异的贡献,特别是在神经胶质细胞中,还知之甚少。我们将 ALS GWAS 相关基因网络与人类星形胶质细胞特异性多组学数据集整合,以阐明特征性生物标志物。它预测先前仅在神经元中检测到的运动蛋白驱动蛋白-1 重链同工型 KIF5A,也可以增强星形胶质细胞中的疾病通路。使用死后组织和基于细胞的扰动平台中的超分辨率结构照明显微镜,我们提供的证据表明 KIF5A 存在于星形胶质细胞的突起中,其缺失会破坏结构完整性和线粒体运输。我们表明,这可能是 SOD1 ALS 星形胶质细胞中细胞骨架和运输变化的基础,其特征是 KIF5A 水平低,而 c-Jun N-末端激酶-1(JNK1)可挽救,JNK1 是一种驱动蛋白转运调节剂。总之,我们的研究揭示了一种控制星形胶质细胞突起完整性的机制,这是维持突触所必需的,并提示 ALS 中存在可靶向的功能丧失。