Suppr超能文献

体重指数与大脑奖赏系统中功能连接的时间变异性增加有关。

The body mass index is associated with increased temporal variability of functional connectivity in brain reward system.

作者信息

Guo Yiqun, Xia Yuxiao, Chen Ke

机构信息

School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China.

Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.

出版信息

Front Nutr. 2023 Jun 14;10:1210726. doi: 10.3389/fnut.2023.1210726. eCollection 2023.

Abstract

The reward system has been proven to be contributed to the vulnerability of obesity. Previous fMRI studies have shown abnormal functional connectivity of the reward system in obesity. However, most studies were based on static index such as resting-state functional connectivity (FC), ignoring the dynamic changes over time. To investigate the dynamic neural correlates of obesity susceptibility, we used a large, demographically well-characterized sample from the Human Connectome Project (HCP) to determine the relationship of body mass index (BMI) with the temporal variability of FC from integrated multilevel perspectives, i.e., regional and within- and between-network levels. Linear regression analysis was used to investigate the association between BMI and temporal variability of FC, adjusting for covariates of no interest. We found that BMI was positively associated with regional FC variability in reward regions, such as the ventral orbitofrontal cortex and visual regions. At the intra-network level, BMI was positively related to the variability of FC within the limbic network (LN) and default mode network (DMN). At the inter-network level, variability of connectivity of LN with DMN, frontoparietal, sensorimotor, and ventral attention networks showed positive correlations with BMI. These findings provided novel evidence for abnormal dynamic functional interaction between the reward network and the rest of the brain in obesity, suggesting a more unstable state and over-frequent interaction of the reward network and other attention and cognitive networks. These findings, thus, provide novel insight into obesity interventions that need to decrease the dynamic interaction between reward networks and other brain networks through behavioral treatment and neural modulation.

摘要

奖励系统已被证明与肥胖易感性有关。先前的功能磁共振成像(fMRI)研究表明,肥胖者的奖励系统存在异常的功能连接。然而,大多数研究基于静息态功能连接(FC)等静态指标,忽略了随时间的动态变化。为了研究肥胖易感性的动态神经关联,我们使用了来自人类连接组计划(HCP)的一个大规模、人口统计学特征良好的样本,从综合的多层次视角,即区域层面以及网络内和网络间层面,来确定体重指数(BMI)与FC时间变异性之间的关系。采用线性回归分析来研究BMI与FC时间变异性之间的关联,并对无关协变量进行了调整。我们发现,BMI与奖励区域(如腹侧眶额皮层和视觉区域)的区域FC变异性呈正相关。在网络内层面,BMI与边缘网络(LN)和默认模式网络(DMN)内的FC变异性呈正相关。在网络间层面,LN与DMN、额顶叶、感觉运动和腹侧注意网络之间的连接变异性与BMI呈正相关。这些发现为肥胖状态下奖励网络与大脑其他区域之间异常的动态功能交互提供了新证据,表明奖励网络与其他注意和认知网络处于更不稳定的状态且交互过于频繁。因此,这些发现为肥胖干预提供了新的见解,即需要通过行为治疗和神经调节来减少奖励网络与其他脑网络之间的动态交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fad/10300418/4d79adf83036/fnut-10-1210726-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验