Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
University of Basel, Basel, Switzerland.
Sci Rep. 2023 Jun 30;13(1):10600. doi: 10.1038/s41598-023-37669-x.
As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer scales becomes critical to guide community-based targeted interventions. Although routine health facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, its incomplete nature of information can result in lower administrative units without empirical data. To overcome geographic sparsity of data and its representativeness, geo-spatial models can leverage routine information to predict risk in un-represented areas as well as estimate uncertainty of predictions. Here, a Bayesian spatio-temporal model was applied on malaria test positivity rate (TPR) data for the period 2017-2019 to predict risks at the ward level, the lowest decision-making unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (≥ 30; 90% certainty) in the North-West and South-East parts of Tanzania. Approximately 11.7 million people lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify different epidemiological strata and guide malaria interventions at micro-planning units in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-spatial modelling techniques for estimation.
随着疟疾传播的减少,以更精细的尺度监测疟疾风险的异质性对于指导基于社区的靶向干预变得至关重要。虽然常规卫生机构(HF)数据可以提供高时空分辨率的流行病学证据,但由于信息的不完全性,可能会导致没有经验数据的较低行政单位。为了克服数据的地理稀疏性及其代表性不足,地理空间模型可以利用常规信息来预测未代表地区的风险,并估计预测的不确定性。在这里,贝叶斯时空模型应用于 2017-2019 年期间的疟疾检测阳性率(TPR)数据,以预测坦桑尼亚大陆的病房级别(最低决策单位)的风险。为了量化相关的不确定性,估计了疟疾 TPR 超过方案阈值的概率。结果显示,疟疾 TPR 在病房之间存在明显的空间异质性。在坦桑尼亚的西北部和东南部,有 1770 万人居住在疟疾 TPR 较高(≥30;90%确定性)的地区。大约有 1170 万人生活在疟疾 TPR 非常低(<5%;90%确定性)的地区。HF 数据可用于识别不同的流行病学阶层,并指导坦桑尼亚的微观规划单位的疟疾干预措施。然而,在非洲的许多情况下,这些数据并不完善,并且经常需要应用地理空间建模技术进行估计。