Suppr超能文献

用 AlphaFold 对蛋白质构象状态建模。

Modeling conformational states of proteins with AlphaFold.

机构信息

Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany. Electronic address: https://twitter.com/sala_davide.

Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany. Electronic address: https://twitter.com/fengel97.

出版信息

Curr Opin Struct Biol. 2023 Aug;81:102645. doi: 10.1016/j.sbi.2023.102645. Epub 2023 Jun 29.

Abstract

Many proteins exert their function by switching among different structures. Knowing the conformational ensembles affiliated with these states is critical to elucidate key mechanistic aspects that govern protein function. While experimental determination efforts are still bottlenecked by cost, time, and technical challenges, the machine-learning technology AlphaFold showed near experimental accuracy in predicting the three-dimensional structure of monomeric proteins. However, an AlphaFold ensemble of models usually represents a single conformational state with minimal structural heterogeneity. Consequently, several pipelines have been proposed to either expand the structural breadth of an ensemble or bias the prediction toward a desired conformational state. Here, we analyze how those pipelines work, what they can and cannot predict, and future directions.

摘要

许多蛋白质通过在不同结构之间切换来发挥其功能。了解与这些状态相关的构象集合对于阐明控制蛋白质功能的关键机制方面至关重要。虽然实验确定工作仍然受到成本、时间和技术挑战的限制,但机器学习技术 AlphaFold 在预测单体蛋白质的三维结构方面几乎达到了实验准确性。然而,AlphaFold 模型的集合通常代表具有最小结构异质性的单个构象状态。因此,已经提出了几种管道来扩展集合的结构广度或使预测偏向于所需的构象状态。在这里,我们分析了这些管道的工作原理、它们可以和不能预测的内容以及未来的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验