Suppr超能文献

钻石网络:一种基于神经网络的用于人类活动识别的异构传感器注意力融合方法

DiamondNet: A Neural-Network-Based Heterogeneous Sensor Attentive Fusion for Human Activity Recognition.

作者信息

Zhu Yida, Luo Haiyong, Chen Runze, Zhao Fang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15321-15331. doi: 10.1109/TNNLS.2023.3285547. Epub 2024 Oct 29.

Abstract

With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.

摘要

随着集成到移动设备中的智能传感器的激增,基于轻量级传感器的细粒度人类活动识别(HAR)已成为个性化应用的有用工具。尽管在过去几十年中已经针对HAR问题提出了浅层和深度学习算法,但这些方法从多种传感器类型中利用语义特征的能力有限。为了解决这一限制,我们提出了一种新颖的HAR框架DiamondNet,它可以从全新的角度创建异构多传感器模态、去噪、提取和融合特征。在DiamondNet中,我们利用多个一维卷积去噪自动编码器(1-D-CDAE)来提取强大的编码器特征。我们进一步引入了基于注意力的图卷积网络来构建新的异构多传感器模态,自适应地利用不同传感器之间的潜在关系。此外,所提出的注意力融合子网联合采用全局注意力机制和浅层特征,有效地校准了多传感器模态的不同层次特征。这种方法放大了信息特征,并为HAR提供了全面而强大的感知。DiamondNet框架的有效性在三个公共数据集上得到了验证。实验结果表明,我们提出的DiamondNet优于其他现有技术的基线,实现了显著且一致的准确率提升。总体而言,我们的工作为HAR引入了一个新的视角,利用多传感器模态和注意力机制的力量显著提高了性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验