School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK.
Proc Biol Sci. 2023 Jul 12;290(2002):20230671. doi: 10.1098/rspb.2023.0671. Epub 2023 Jul 5.
The evolutionary history of animal cognition appears to involve a few major changes that opened up new phylogenetic possibilities for cognition. Here, we review and contrast current transitional accounts of cognitive evolution. We discuss how an important feature of an evolutionary transition should be that it changes what is evolvable, so that the possible phenotypic spaces before and after a transition are different. We develop an account of cognitive evolution that focuses on how selection might act on the computational architecture of nervous systems. Selection for operational efficiency or robustness can drive changes in computational architecture that then make new types of cognition evolvable. We propose five major transitions in the evolution of animal nervous systems. Each of these gave rise to a different type of computational architecture that changed the evolvability of a lineage and allowed the evolution of new cognitive capacities. Transitional accounts have value in that they allow a big-picture perspective of macroevolution by focusing on changes that have had major consequences. For cognitive evolution, however, we argue it is most useful to focus on evolutionary changes to the nervous system that changed what is evolvable, rather than to focus on specific cognitive capacities.
动物认知的进化历史似乎涉及一些重大变化,这些变化为认知开辟了新的系统发育可能性。在这里,我们回顾和对比了当前认知进化的过渡解释。我们讨论了进化过渡的一个重要特征应该是它改变了什么是可进化的,因此过渡前后的可能表型空间是不同的。我们提出了一个关注选择如何作用于神经系统计算架构的认知进化解释。为了操作效率或鲁棒性而进行的选择可以驱动计算架构的变化,从而使新类型的认知变得可进化。我们提出了动物神经系统进化中的五个主要过渡。每一个过渡都产生了一种不同类型的计算架构,改变了一个谱系的可进化性,并允许新的认知能力的进化。过渡解释之所以有价值,是因为它们通过关注具有重大影响的变化,提供了宏观进化的全局视角。然而,对于认知进化,我们认为最有用的是关注改变了可进化性的神经系统的进化变化,而不是关注特定的认知能力。