Department of Orthopaedics, Affiliated Hospital of Hebei University, No. 212, Yuhua Road, Hebei, Baoding City, 071000, China.
Hebei University, Hebei, Baoding City, China.
J Orthop Surg Res. 2023 Jul 5;18(1):484. doi: 10.1186/s13018-023-03977-1.
The influence of total en bloc spondylectomy (TES) on spinal stability is substantial, necessitating strong fixation to restore spinal stability. The transverse connector (TC) serves as a posterior spinal instrumentation that connects the left and right sides of the pedicle screw-rod system. Several studies have highlighted the potential of a TC in enhancing the stability of the fixed segments. However, contradictory results have suggested that a TC not only fails to improve the stability of the fixed segments but also might promote stress associated with internal fixation. To date, there is a lack of previous research investigating the biomechanical effects of a TC on TES. This study aimed to investigate the biomechanical effects of a TC on internal fixation during TES of the lumbar (L) spine.
A single-segment (L3 segment) TES was simulated using a comprehensive L spine finite element model. Five models were constructed based on the various positions of the TC, namely the intact model (L1-sacrum), the TES model without a TC, the TES model with a TC at L1-2, the TES model with a TC at L2-4, and the TES model with a TC at L4-5. Mechanical analysis of these distinct models was conducted using the Abaqus software to assess the variations in the biomechanics of the pedicle screw-rod system, titanium cage, and adjacent endplates.
The stability of the surgical segments was found to be satisfactory across all models. Compared with the complete model, the internal fixation device exhibited the greatest constraint on overextension (95.2-95.6%), while showing the least limitation on left/right rotation (53.62-55.64%). The application of the TC had minimal effect on the stability of the fixed segments, resulting in a maximum reduction in segment mobility of 0.11° and a variation range of 3.29%. Regardless of the use of a TC, no significant changes in stress were observed for the titanium cage. In the model without the TC, the maximum von Mises stress (VMS) for the pedicle screw-rod system reached 136.9 MPa during anterior flexion. Upon the addition of a TC, the maximum VMS of the pedicle screw-rod system increased to varying degrees. The highest recorded VMS was 459.3 MPa, indicating a stress increase of 335.5%. Following the TC implantation, the stress on the adjacent endplate exhibited a partial reduction, with the maximum stress reduced by 27.6%.
The use of a TC in TES does not improve the stability of the fixed segments and instead might result in increased stress concentration within the internal fixation devices. Based on these findings, the routine utilisation of TC in TES is deemed unnecessary.
全脊椎整块切除术(TES)对脊柱稳定性的影响很大,需要强有力的固定来恢复脊柱稳定性。横联器(TC)是一种后路脊柱内固定装置,连接左右侧的椎弓根螺钉-棒系统。一些研究强调了 TC 增强固定节段稳定性的潜力。然而,也有研究结果表明,TC 不仅不能改善固定节段的稳定性,反而可能导致内固定相关的应力增加。迄今为止,尚无研究探讨 TC 对 TES 的生物力学影响。本研究旨在探讨 TC 对腰椎(L)脊柱 TES 内固定的生物力学影响。
采用完整的 L 脊柱有限元模型模拟单节段(L3 节段)TES。根据 TC 的不同位置,构建了 5 种模型,即完整模型(L1-骶骨)、无 TC 的 TES 模型、L1-2 有 TC 的 TES 模型、L2-4 有 TC 的 TES 模型和 L4-5 有 TC 的 TES 模型。使用 Abaqus 软件对这些不同模型进行力学分析,以评估椎弓根螺钉-棒系统、钛笼和相邻终板的生物力学变化。
所有模型的手术节段稳定性均令人满意。与完整模型相比,内固定装置对过伸的约束最大(95.2%-95.6%),而对左右旋转的限制最小(53.62%-55.64%)。TC 的应用对固定节段的稳定性影响不大,导致节段活动度最大减少 0.11°,变化范围 3.29%。无论是否使用 TC,钛笼的应力均无明显变化。在无 TC 的模型中,椎弓根螺钉-棒系统在前屈时的最大 von Mises 应力(VMS)达到 136.9 MPa。加入 TC 后,椎弓根螺钉-棒系统的最大 VMS 呈不同程度的增加。记录到的最大 VMS 为 459.3 MPa,表明应力增加了 335.5%。TC 植入后,相邻终板的应力呈部分降低,最大应力降低 27.6%。
在 TES 中使用 TC 并不能提高固定节段的稳定性,反而可能导致内固定装置的应力集中增加。基于这些发现,常规使用 TC 进行 TES 是不必要的。