Suppr超能文献

基于改进遗传算法 BP 和自适应扩展卡尔曼滤波的锂离子电池荷电状态估计新融合方法。

A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.

机构信息

College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

出版信息

Sensors (Basel). 2023 Jun 9;23(12):5457. doi: 10.3390/s23125457.

Abstract

The lithium-ion battery is the power source of an electric vehicle, so it is of great significance to estimate the state of charge (SOC) of lithium-ion batteries accurately to ensure vehicle safety. To improve the accuracy of the parameters of the equivalent circuit model for batteries, a second-order RC model for ternary Li-ion batteries is established, and the model parameters are identified online based on the forgetting factor recursive least squares (FFRLS) estimator. To improve the accuracy of SOC estimation, a novel fusion method, IGA-BP-AEKF, is proposed. Firstly, an adaptive extended Kalman filter (AEKF) is used to predict the SOC. Then, an optimization method for BP neural networks (BPNNs) based on an improved genetic algorithm (IGA) is proposed, in which pertinent parameters affecting AEKF estimation are utilized for BPNN training. Furthermore, a method with evaluation error compensation for AEKF based on such a trained BPNN is proposed to enhance SOC evaluation precision. The excellent accuracy and stability of the suggested method are confirmed by the experimental data under FUDS working conditions, which indicates that the proposed IGA-BP-EKF algorithm is superior, with the highest error of 0.0119, MAE of 0.0083, and RMSE of 0.0088.

摘要

锂离子电池是电动汽车的动力源,因此准确估计锂离子电池的荷电状态(SOC)对于确保车辆安全具有重要意义。为了提高电池等效电路模型参数的准确性,建立了三元锂离子电池的二阶 RC 模型,并基于遗忘因子递归最小二乘(FFRLS)估计器在线识别模型参数。为了提高 SOC 估计的准确性,提出了一种新的融合方法 IGA-BP-AEKF。首先,使用自适应扩展卡尔曼滤波器(AEKF)对 SOC 进行预测。然后,提出了一种基于改进遗传算法(IGA)的 BP 神经网络(BPNN)优化方法,其中利用影响 AEKF 估计的相关参数对 BPNN 进行训练。此外,还提出了一种基于经过训练的 BPNN 的用于 AEKF 的评估误差补偿方法,以提高 SOC 评估精度。FUDS 工作条件下的实验数据验证了所提方法的出色准确性和稳定性,表明所提的 IGA-BP-AEKF 算法具有优越性,其最大误差为 0.0119,MAE 为 0.0083,RMSE 为 0.0088。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e83/10305063/a75e484dd735/sensors-23-05457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验