Suppr超能文献

在活大肠杆菌中使用 3D 单分子追踪观察到 iLID 光遗传学蛋白的二聚化。

Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli.

机构信息

Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.

Department of Chemistry, University of Virginia, Charlottesville, Virginia.

出版信息

Biophys J. 2023 Aug 22;122(16):3254-3267. doi: 10.1016/j.bpj.2023.07.003. Epub 2023 Jul 7.

Abstract

3D single-molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and cellular environments. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating cellular processes, real-time perturbations to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. For example, optogenetic dimerization systems can be used to manipulate protein spatial distributions that could offer a means to deplete specific diffusive states observed in single-molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single-molecule tracking. We observed a robust optogenetic response in protein spatial distributions after 488 nm laser activation. Surprisingly, 3D single-molecule tracking results indicate activation of the optogenetic response when illuminating with high-intensity light with wavelengths at which there is minimal photon absorbance by the LOV2 domain. The preactivation can be minimized through the use of iLID system mutants, and titration of protein expression levels.

摘要

3D 单分子跟踪显微镜使人们能够测量活细胞中的蛋白质扩散,从而提供有关蛋白质动力学和细胞环境的信息。例如,可以分辨出不同的扩散状态,并将其分配给不同大小和组成的蛋白质复合物。然而,支持扩散状态分配需要大量的统计能力和生物学验证,通常通过遗传删除结合伴侣来实现。在研究细胞过程时,实时改变蛋白质的空间分布比永久遗传删除必需蛋白质更为可取。例如,光遗传学二聚化系统可用于操纵蛋白质的空间分布,这可能提供一种耗尽单分子跟踪实验中观察到的特定扩散状态的手段。在这里,我们使用衍射极限显微镜和 3D 单分子跟踪技术评估了 iLID 光遗传学系统在活大肠杆菌细胞中的性能。在 488nm 激光激活后,我们观察到蛋白质空间分布的稳健光遗传学响应。令人惊讶的是,3D 单分子跟踪结果表明,当用 LOV2 结构域最小光吸收波长的高强度光照射时,光遗传学反应会被激活。通过使用 iLID 系统突变体和蛋白表达水平的滴定,可以最小化预激活。

相似文献

1
Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli.
Biophys J. 2023 Aug 22;122(16):3254-3267. doi: 10.1016/j.bpj.2023.07.003. Epub 2023 Jul 7.
2
Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment.
ACS Synth Biol. 2021 May 21;10(5):1009-1023. doi: 10.1021/acssynbio.0c00511. Epub 2021 Apr 12.
4
Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization.
Nat Commun. 2023 Mar 11;14(1):1336. doi: 10.1038/s41467-023-36879-1.
5
Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.
ACS Synth Biol. 2018 Jan 19;7(1):2-9. doi: 10.1021/acssynbio.7b00248. Epub 2017 Dec 4.
6
mem-iLID, a fast and economic protein purification method.
Biosci Rep. 2021 Jul 30;41(7). doi: 10.1042/BSR20210800.
7
Two-Color Single-Molecule Tracking in Live Cells.
Methods Mol Biol. 2017;1663:127-138. doi: 10.1007/978-1-4939-7265-4_11.
8
Light-Inducible Recombinases for Bacterial Optogenetics.
ACS Synth Biol. 2020 Feb 21;9(2):227-235. doi: 10.1021/acssynbio.9b00395. Epub 2020 Jan 21.
9
Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells.
Methods Mol Biol. 2016;1431:221-34. doi: 10.1007/978-1-4939-3631-1_16.
10
Construction of Light-Activated Neurotrophin Receptors Using the Improved Light-Induced Dimerizer (iLID).
J Mol Biol. 2020 Jun 12;432(13):3739-3748. doi: 10.1016/j.jmb.2020.04.018. Epub 2020 Apr 23.

本文引用的文献

2
Independent Promoter Recognition by TcpP Precedes Cooperative Promoter Activation by TcpP and ToxR.
mBio. 2021 Oct 26;12(5):e0221321. doi: 10.1128/mBio.02213-21. Epub 2021 Sep 7.
3
Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
Int J Mol Sci. 2021 May 18;22(10):5300. doi: 10.3390/ijms22105300.
4
A General Method to Improve Fluorophores Using Deuterated Auxochromes.
JACS Au. 2021 May 24;1(5):690-696. doi: 10.1021/jacsau.1c00006. Epub 2021 Apr 23.
7
Lights, cytoskeleton, action: Optogenetic control of cell dynamics.
Curr Opin Cell Biol. 2020 Oct;66:1-10. doi: 10.1016/j.ceb.2020.03.003. Epub 2020 May 1.
8
An optimized toolbox for the optogenetic control of intracellular transport.
J Cell Biol. 2020 Apr 6;219(4). doi: 10.1083/jcb.201907149.
9
SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics.
Methods. 2021 Sep;193:16-26. doi: 10.1016/j.ymeth.2020.03.008. Epub 2020 Apr 2.
10
Optogenetic Control of Microtubule Dynamics.
Methods Mol Biol. 2020;2101:211-234. doi: 10.1007/978-1-0716-0219-5_14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验