Toronto Metropolitan University, Toronto, ON, Canada.
Center for Heart, Lung Innovation, University of British Columbia, Vancouver, BC, Canada.
Chest. 2023 Nov;164(5):1139-1149. doi: 10.1016/j.chest.2023.06.008. Epub 2023 Jun 17.
Identifying individuals at risk of progressing to COPD may allow for initiation of treatment to potentially slow the progression of the disease or the selection of subgroups for discovery of novel interventions.
Does the addition of CT imaging features, texture-based radiomic features, and established quantitative CT scan to conventional risk factors improve the performance for predicting progression to COPD in individuals who smoke with machine learning?
Participants at risk (individuals who currently or formerly smoked, without COPD) from the Canadian Cohort Obstructive Lung Disease (CanCOLD) population-based study underwent CT imaging at baseline and spirometry at baseline and follow-up. Various combinations of CT scan features, texture-based CT scan radiomics (n = 95), and established quantitative CT scan (n = 8), as well as demographic (n = 5) and spirometry (n = 3) measurements, with machine learning algorithms were evaluated to predict progression to COPD. Performance metrics included the area under the receiver operating characteristic curve (AUC) to evaluate the models. DeLong test was used to compare the performance of the models.
Among the 294 at-risk participants who were evaluated (mean age, 65.6 ± 9.2 years; 42% female; mean pack-years, 17.9 ± 18.7), 52 participants (23.7%) in the training data set and 17 participants (23.0%) in the testing data set progressed to spirometric COPD at follow-up (2.5 ± 0.9 years from baseline). Compared with machine learning models with demographics alone (AUC, 0.649), the addition of CT imaging features to demographics (AUC, 0.730; P < .05) or CT imaging features and spirometry to demographics (AUC, 0.877; P < .05) significantly improved the performance for predicting progression to COPD.
Heterogeneous structural changes occur in the lungs of individuals at risk that can be quantified using CT imaging features, and evaluation of these features together with conventional risk factors improves performance for predicting progression to COPD.
识别有进展为 COPD 风险的个体可能有助于启动治疗,从而潜在地减缓疾病进展或选择亚组以发现新的干预措施。
通过机器学习,将 CT 成像特征、基于纹理的放射组学特征和已建立的定量 CT 扫描添加到常规危险因素中,是否能提高预测有吸烟史的个体进展为 COPD 的性能?
加拿大队列阻塞性肺疾病(CanCOLD)基于人群的研究中处于风险中的个体(目前或曾经吸烟、无 COPD)在基线时进行 CT 成像,在基线和随访时进行肺活量测定。评估了各种 CT 扫描特征、基于纹理的 CT 扫描放射组学(n=95)和已建立的定量 CT 扫描(n=8),以及人口统计学(n=5)和肺活量测定(n=3)测量值与机器学习算法相结合,以预测进展为 COPD。性能指标包括评估模型的接收者操作特征曲线下面积(AUC)。使用 DeLong 检验比较模型的性能。
在评估的 294 名处于风险中的参与者中(平均年龄 65.6±9.2 岁;42%为女性;平均吸烟指数 17.9±18.7),训练数据集中有 52 名参与者(23.7%)和测试数据集中有 17 名参与者(23.0%)在随访时进展为肺功能 COPD(从基线开始 2.5±0.9 年)。与仅使用人口统计学数据的机器学习模型相比(AUC,0.649),将 CT 成像特征添加到人口统计学数据中(AUC,0.730;P<.05)或 CT 成像特征和肺活量测定添加到人口统计学数据中(AUC,0.877;P<.05)显著提高了预测进展为 COPD 的性能。
有风险的个体的肺部会发生异质性结构变化,这些变化可以通过 CT 成像特征进行量化,并且评估这些特征与常规危险因素一起可以提高预测进展为 COPD 的性能。