Esmaili Soheila, Ebadi Ahmad, Khazaei Ardeshir, Ghorbani Hamideh, Faramarzi Mohammad Ali, Mojtabavi Somayeh, Mahdavi Mohammad, Najafi Zahra
Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran.
Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
ACS Omega. 2023 Jun 20;8(26):23412-23424. doi: 10.1021/acsomega.3c00133. eCollection 2023 Jul 4.
In this study, a novel series of pyrano[3,2-]quinoline-1,2,3-triazole hybrids were synthesized and evaluated against the α-glucosidase enzyme. All compounds showed significant in vitro inhibitory activity (IC values of 1.19 ± 0.05 to 20.01 ± 0.02 μM) compared to the standard drug acarbose (IC = 750.0 μM). Among them, 2-amino-4-(3-((1-benzyl-1-1,2,3-triazol-4-yl)methoxy)phenyl)-5-oxo-5,6-dihydro-4-pyrano[3,2-]quinoline-3-carbonitrile (compound ) demonstrated the best inhibitory effect toward α-glucosidase (IC = 1.19 ± 0.05 μM) with a competitive pattern of inhibition. Since compound was synthesized as a racemic mixture, molecular docking and dynamics simulations were performed on - and -enantiomers of compound . Based on the molecular docking results, both - and -enantiomers of compound displayed significant interactions with key residues including catalytic triad (Asp214, Glu276, and Asp349) in the enzyme active site. However, an in silico study indicated that - and -enantiomers were inversely located in the enzyme active site. The -enantiomer formed a more stable complex with a higher binding affinity to the active site of α-glucosidase than that of the - enantiomer. The benzyl ring in the most stable complex (()-compound ) was located in the bottom of the binding site and interacted with the enzyme active site, while the pyrano[3,2-]quinoline moiety occupied the high solvent accessible entrance of the active site. Thus, the synthesized pyrano[3,2-]quinoline-1,2,3-triazole hybrids seem to be promising scaffolds for the development of novel α-glucosidase inhibitors.
在本研究中,合成了一系列新型的吡喃并[3,2 - ]喹啉 - 1,2,3 - 三唑杂化物,并对其进行了α - 葡萄糖苷酶抑制活性评估。与标准药物阿卡波糖(IC = 750.0 μM)相比,所有化合物均表现出显著的体外抑制活性(IC值为1.19 ± 0.05至20.01 ± 0.02 μM)。其中,2 - 氨基 - 4 - (3 - ((1 - 苄基 - 1H - 1,2,3 - 三唑 - 4 - 基)甲氧基)phenyl) - 5 - 氧代 - 5,6 - 二氢 - 4H - 吡喃并[3,2 - ]喹啉 - 3 - 腈(化合物 )对α - 葡萄糖苷酶表现出最佳抑制效果(IC = 1.19 ± 0.05 μM),呈现竞争性抑制模式。由于化合物 是以消旋混合物形式合成的,因此对化合物 的 - 和 - 对映体进行了分子对接和动力学模拟。基于分子对接结果,化合物 的 - 和 - 对映体均与酶活性位点中的关键残基(包括催化三联体(Asp214、Glu276和Asp349))表现出显著相互作用。然而,计算机模拟研究表明, - 和 - 对映体在酶活性位点中的位置相反。与 - 对映体相比, - 对映体与α - 葡萄糖苷酶活性位点形成了更稳定的复合物,具有更高的结合亲和力。在最稳定的复合物(( ) - 化合物 )中,苄基环位于结合位点底部并与酶活性位点相互作用,而吡喃并[3,2 - ]喹啉部分占据了活性位点高溶剂可及的入口。因此,合成的吡喃并[3,2 - ]喹啉 - 1,2,3 - 三唑杂化物似乎是开发新型α - 葡萄糖苷酶抑制剂的有前景的骨架。