Suppr超能文献

线粒体膜相关蛋白 Mba1 通过影响烟曲霉活性氧的产生而赋予抗真菌耐药性。

Mitochondrial Membrane-Associated Protein Mba1 Confers Antifungal Resistance by Affecting the Production of Reactive Oxygen Species in Aspergillus fumigatus.

机构信息

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.

出版信息

Antimicrob Agents Chemother. 2023 Aug 17;67(8):e0022523. doi: 10.1128/aac.00225-23. Epub 2023 Jul 10.

Abstract

Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non- mutations has been recognized. Previous studies have revealed that some isolates with non- mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non- mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to -mediated drug resistance. The findings in this study suggest that some non- proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.

摘要

唑类耐药在人类真菌病原体烟曲霉中成为全球健康的主要威胁。迄今为止,唑类目标基因编码突变与唑类耐药的赋予有关,但由于非突变导致的唑类耐药烟曲霉分离株的数量不断增加已得到公认。先前的研究表明,一些非突变诱导的唑类耐药分离株与线粒体功能障碍有关。然而,对于非突变参与的分子机制的认识有限。在这项研究中,我们使用下一代测序发现,没有突变的九个独立的唑类耐药分离株具有正常的线粒体膜电位。在这些分离株中,线粒体核糖体结合蛋白 Mba1 的突变赋予了唑类、特比萘芬和两性霉素 B 的多药耐药性,但不赋予棘白菌素的耐药性。分子特征验证了 Mba1 的 TIM44 结构域对于耐药性至关重要,而 Mba1 的 N 端在生长中起主要作用。缺失没有影响 Cyp51A 的表达,但降低了真菌细胞内活性氧(ROS)含量,这有助于产生的药物耐药性。本研究的结果表明,一些非蛋白驱动药物耐药机制,其原因是抗真菌药物诱导的 ROS 产生减少。

相似文献

2
Variability in competitive fitness among environmental and clinical azole-resistant isolates.
mBio. 2024 Apr 10;15(4):e0026324. doi: 10.1128/mbio.00263-24. Epub 2024 Feb 26.
4
Azole Resistance-Associated Regulatory Motifs within the Promoter of in Aspergillus fumigatus.
Microbiol Spectr. 2022 Jun 29;10(3):e0120922. doi: 10.1128/spectrum.01209-22. Epub 2022 May 16.
6
Screening and Characterization of a Non-cyp51A Mutation in an Aspergillus fumigatus cox10 Strain Conferring Azole Resistance.
Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.02101-16. Print 2017 Jan.
7
AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus.
mBio. 2019 Mar 12;10(2):e02563-18. doi: 10.1128/mBio.02563-18.
8
Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations.
Fungal Genet Biol. 2019 Nov;132:103265. doi: 10.1016/j.fgb.2019.103265. Epub 2019 Aug 26.
9
The cytochrome P450 reductase CprA is a rate-limiting factor for Cyp51A-mediated azole resistance in .
Antimicrob Agents Chemother. 2023 Nov 15;67(11):e0091823. doi: 10.1128/aac.00918-23. Epub 2023 Oct 10.
10
Azole Resistance of Environmental and Clinical Aspergillus fumigatus Isolates from Switzerland.
Antimicrob Agents Chemother. 2018 Mar 27;62(4). doi: 10.1128/AAC.02088-17. Print 2018 Apr.

引用本文的文献

1
Agricultural SDHIs Induce Azole Resistance in Aspergillus fumigatus via Mitochondrial Sdh1 Suppression.
Mycopathologia. 2025 Sep 15;190(5):85. doi: 10.1007/s11046-025-00992-0.
3
-a novel zinc finger transcription factor involved in azole resistance.
Mycology. 2024 Apr 23;16(1):266-279. doi: 10.1080/21501203.2024.2342521. eCollection 2025.
5
Suppressed Protein Translation Caused by MSP-8 Deficiency Determines Fungal Multidrug Resistance with Fitness Cost.
Adv Sci (Weinh). 2025 Feb;12(6):e2412514. doi: 10.1002/advs.202412514. Epub 2024 Dec 16.
6
Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0017122. doi: 10.1128/mmbr.00171-22. Epub 2024 Sep 4.
7
9
Epidemiology and Azole Resistance of Clinical Isolates of from a Large Tertiary Hospital in Ningxia, China.
Infect Drug Resist. 2024 Feb 2;17:427-439. doi: 10.2147/IDR.S440363. eCollection 2024.

本文引用的文献

1
Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation.
Microbiol Spectr. 2022 Jun 29;10(3):e0112122. doi: 10.1128/spectrum.01121-22. Epub 2022 Jun 8.
2
Deletion of Results in Pan-Azole Resistance in Aspergillus fumigatus.
Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0015122. doi: 10.1128/aac.00151-22. Epub 2022 Jun 1.
3
Tackling the emerging threat of antifungal resistance to human health.
Nat Rev Microbiol. 2022 Sep;20(9):557-571. doi: 10.1038/s41579-022-00720-1. Epub 2022 Mar 29.
4
Citizen Science Surveillance of Triazole-Resistant in United Kingdom Residential Garden Soils.
Appl Environ Microbiol. 2022 Feb 22;88(4):e0206121. doi: 10.1128/AEM.02061-21. Epub 2022 Jan 5.
5
Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance.
PLoS Pathog. 2021 Jul 29;17(7):e1009711. doi: 10.1371/journal.ppat.1009711. eCollection 2021 Jul.
6
Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD to alleviate mitochondrial disease.
Cell Metab. 2021 Oct 5;33(10):1974-1987.e9. doi: 10.1016/j.cmet.2021.06.013. Epub 2021 Jul 15.
7
and aspergillosis: From basics to clinics.
Stud Mycol. 2021 May 10;100:100115. doi: 10.1016/j.simyco.2021.100115. eCollection 2021 Sep.
9
Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow.
Biomolecules. 2020 Sep 20;10(9):1345. doi: 10.3390/biom10091345.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验