Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058, Erlangen, Germany.
Universität des Saarlandes, 66123, Saarbrücken, Germany.
Sci Rep. 2023 Jul 10;13(1):11106. doi: 10.1038/s41598-023-38132-7.
Acoustic identification of vocalizing individuals opens up new and deeper insights into animal communications, such as individual-/group-specific dialects, turn-taking events, and dialogs. However, establishing an association between an individual animal and its emitted signal is usually non-trivial, especially for animals underwater. Consequently, a collection of marine species-, array-, and position-specific ground truth localization data is extremely challenging, which strongly limits possibilities to evaluate localization methods beforehand or at all. This study presents ORCA-SPY, a fully-automated sound source simulation, classification and localization framework for passive killer whale (Orcinus orca) acoustic monitoring that is embedded into PAMGuard, a widely used bioacoustic software toolkit. ORCA-SPY enables array- and position-specific multichannel audio stream generation to simulate real-world ground truth killer whale localization data and provides a hybrid sound source identification approach integrating ANIMAL-SPOT, a state-of-the-art deep learning-based orca detection network, followed by downstream Time-Difference-Of-Arrival localization. ORCA-SPY was evaluated on simulated multichannel underwater audio streams including various killer whale vocalization events within a large-scale experimental setup benefiting from previous real-world fieldwork experience. Across all 58,320 embedded vocalizing killer whale events, subject to various hydrophone array geometries, call types, distances, and noise conditions responsible for a signal-to-noise ratio varying from [Formula: see text] dB to 3 dB, a detection rate of 94.0 % was achieved with an average localization error of 7.01[Formula: see text]. ORCA-SPY was field-tested on Lake Stechlin in Brandenburg Germany under laboratory conditions with a focus on localization. During the field test, 3889 localization events were observed with an average error of 29.19[Formula: see text] and a median error of 17.54[Formula: see text]. ORCA-SPY was deployed successfully during the DeepAL fieldwork 2022 expedition (DLFW22) in Northern British Columbia, with a mean average error of 20.01[Formula: see text] and a median error of 11.01[Formula: see text] across 503 localization events. ORCA-SPY is an open-source and publicly available software framework, which can be adapted to various recording conditions as well as animal species.
声学识别发声个体为动物交流开辟了新的、更深层次的研究视角,例如个体/群体特定的方言、轮流事件和对话。然而,将单个动物与其发出的信号联系起来通常并不容易,特别是对于水下动物而言。因此,收集特定于海洋物种、阵列和位置的地面实况定位数据极具挑战性,这极大地限制了在事前或根本无法评估定位方法的可能性。本研究提出了 ORCA-SPY,这是一个完全自动化的声源模拟、分类和定位框架,用于被动式虎鲸(Orcinus orca)声学监测,嵌入到广泛使用的生物声学软件工具包 PAMGuard 中。ORCA-SPY 能够生成特定于阵列和位置的多通道音频流,以模拟真实世界的虎鲸定位数据,并提供一种混合声源识别方法,该方法集成了 ANIMAL-SPOT,这是一种基于最先进的深度学习的虎鲸检测网络,然后进行下游的到达时间差定位。ORCA-SPY 在受益于先前真实世界野外工作经验的大规模实验设置中,对包括各种虎鲸发声事件在内的模拟多通道水下音频流进行了评估。在所有 58320 个嵌入的发声虎鲸事件中,针对各种水听器阵列几何形状、呼叫类型、距离和噪声条件,信号噪声比从[公式:见文本]dB 到 3dB 不等,实现了 94.0%的检测率,平均定位误差为 7.01[公式:见文本]。ORCA-SPY 在德国勃兰登堡州的施特廷湖进行了现场测试,重点是定位。在现场测试中,观察到 3889 个定位事件,平均误差为 29.19[公式:见文本],中位数误差为 17.54[公式:见文本]。ORCA-SPY 在 2022 年不列颠哥伦比亚省北部的 DeepAL 野外工作(DLFW22)中成功部署,503 个定位事件的平均平均误差为 20.01[公式:见文本],中位数误差为 11.01[公式:见文本]。ORCA-SPY 是一个开源的、可供公众使用的软件框架,它可以适应各种记录条件和动物物种。