Max Planck Institute for Marine Microbiology, Bremen, Germany.
Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
Nat Microbiol. 2023 Aug;8(8):1574-1586. doi: 10.1038/s41564-023-01425-8. Epub 2023 Jul 10.
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
一氧化氮(NO)是一种高反应性和气候活性分子,也是微生物氮循环中的关键中间产物。尽管它在反硝化和需氧呼吸的进化中发挥了作用,具有较高的氧化还原电位和维持微生物生长的能力,但由于无法直接从环境中获得以 NO 作为底物的可还原 NO 的微生物培养物,我们对可还原 NO 的微生物的了解仍然有限。在这里,我们使用连续生物反应器和持续供应的 NO 作为唯一的电子受体,对微生物群落进行了富集和表征,该群落主要由两种以前未知的微生物组成,它们在纳摩尔浓度的 NO 下生长,并能在高浓度(>6 μM)这种有毒气体中存活,将其还原为 N,几乎不产生或不检测到温室气体氧化亚氮的生成。这些结果深入了解了可还原 NO 的微生物的生理学特性,这些微生物在控制气候活性气体、废物去除以及硝酸盐和氧气呼吸的进化中起着关键作用。