Suppr超能文献

基于改进型 U-Net 的复杂背景下非接触式手背静脉快速精准 ROI 提取。

Fast and Accurate ROI Extraction for Non-Contact Dorsal Hand Vein Detection in Complex Backgrounds Based on Improved U-Net.

机构信息

College of Electronic Engineering (College of Artifificial Intelligence), South China Agricultural University, Guangzhou 510642, China.

Guangzhou Intelligence Oriented Technology Co., Ltd., No. 604, Tian'an Technology Development Building, Tian'an Hi-Tech Ecological Park, No. 555, North Panyu Avenue, Panyu District, Guangzhou 511493, China.

出版信息

Sensors (Basel). 2023 May 10;23(10):4625. doi: 10.3390/s23104625.

Abstract

In response to the difficulty of traditional image processing methods to quickly and accurately extract regions of interest from non-contact dorsal hand vein images in complex backgrounds, this study proposes a model based on an improved U-Net for dorsal hand keypoint detection. The residual module was added to the downsampling path of the U-Net network to solve the model degradation problem and improve the feature information extraction ability of the network; the Jensen-Shannon (JS) divergence loss function was used to supervise the final feature map distribution so that the output feature map tended to Gaussian distribution and improved the feature map multi-peak problem; and Soft-argmax is used to calculate the keypoint coordinates of the final feature map to realize end-to-end training. The experimental results showed that the accuracy of the improved U-Net network model reached 98.6%, which was 1% better than the original U-Net network model; the improved U-Net network model file was only 1.16 M, which achieved a higher accuracy than the original U-Net network model with significantly reduced model parameters. Therefore, the improved U-Net model in this study can realize dorsal hand keypoint detection (for region of interest extraction) for non-contact dorsal hand vein images and is suitable for practical deployment in low-resource platforms such as edge-embedded systems.

摘要

针对传统图像处理方法难以快速、准确地从复杂背景下的非接触式手背静脉图像中提取感兴趣区域的问题,本研究提出了一种基于改进的 U-Net 的手背关键点检测模型。在 U-Net 网络的下采样路径中添加了残差模块,以解决模型退化问题,提高网络的特征信息提取能力;使用 Jensen-Shannon (JS) 散度损失函数来监督最终特征图的分布,使输出特征图趋于高斯分布,从而改善特征图的多峰问题;使用 Soft-argmax 计算最终特征图的关键点坐标,实现端到端训练。实验结果表明,改进后的 U-Net 网络模型的准确率达到了 98.6%,比原始的 U-Net 网络模型提高了 1%;改进后的 U-Net 网络模型文件仅为 1.16M,在显著减少模型参数的情况下,实现了比原始 U-Net 网络模型更高的准确率。因此,本研究中的改进 U-Net 模型可以实现非接触式手背静脉图像的手背关键点检测(用于提取感兴趣区域),适用于边缘嵌入式系统等资源有限的平台上的实际部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9242/10223531/b7eea1f13431/sensors-23-04625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验