Suppr超能文献

基于上下文感知的计算机视觉方法从视频流中检测出租车扬招场景。

A Context-Aware, Computer-Vision-Based Approach for the Detection of Taxi Street-Hailing Scenes from Video Streams.

机构信息

LARIA Research Unit, National School of Computer Science, Manouba University, Tunis 2010, Tunisia.

Computer Science Department, Dhofar University, Salalah 211, Oman.

出版信息

Sensors (Basel). 2023 May 16;23(10):4796. doi: 10.3390/s23104796.

Abstract

With the increasing deployment of autonomous taxis in different cities around the world, recent studies have stressed the importance of developing new methods, models and tools for intuitive human-autonomous taxis interactions (HATIs). Street hailing is one example, where passengers would hail an autonomous taxi by simply waving a hand, exactly like they do for manned taxis. However, automated taxi street-hailing recognition has been explored to a very limited extent. In order to address this gap, in this paper, we propose a new method for the detection of taxi street hailing based on computer vision techniques. Our method is inspired by a quantitative study that we conducted with 50 experienced taxi drivers in the city of Tunis (Tunisia) in order to understand how they recognize street-hailing cases. Based on the interviews with taxi drivers, we distinguish between explicit and implicit street-hailing cases. Given a traffic scene, explicit street hailing is detected using three elements of visual information: the hailing gesture, the person's relative position to the road and the person's head orientation. Any person who is standing close to the road, looking towards the taxi and making a hailing gesture is automatically recognized as a taxi-hailing passenger. If some elements of the visual information are not detected, we use contextual information (such as space, time and weather) in order to evaluate the existence of implicit street-hailing cases. For example, a person who is standing on the roadside in the heat, looking towards the taxi but not waving his hand is still considered a potential passenger. Hence, the new method that we propose integrates both visual and contextual information in a computer-vision pipeline that we designed to detect taxi street-hailing cases from video streams collected by capturing devices mounted on moving taxis. We tested our pipeline using a dataset that we collected with a taxi on the roads of Tunis. Considering both explicit and implicit hailing scenarios, our method yields satisfactory results in relatively realistic settings, with an accuracy of 80%, a precision of 84% and a recall of 84%.

摘要

随着自动驾驶出租车在全球不同城市的日益部署,最近的研究强调了开发直观的人机自动驾驶出租车交互(HATIs)新方法、模型和工具的重要性。扬招就是一个例子,乘客只需挥手即可扬招自动驾驶出租车,就像招手招停有人驾驶的出租车一样。然而,自动化出租车扬招识别的研究还非常有限。为了解决这个差距,本文提出了一种基于计算机视觉技术的出租车扬招检测新方法。我们的方法受到了在突尼斯市(突尼斯)与 50 名经验丰富的出租车司机进行的一项定量研究的启发,以便了解他们如何识别扬招案例。根据对出租车司机的访谈,我们区分了明确和隐含的扬招案例。对于给定的交通场景,使用视觉信息的三个要素来检测明确的扬招:招手动作、人的相对位置到道路和人的头部方向。任何站在靠近道路、朝出租车方向看并做出招手动作的人都会被自动识别为扬招乘客。如果没有检测到某些视觉信息的元素,则使用上下文信息(如空间、时间和天气)来评估隐含扬招案例的存在。例如,一个站在路边炎热天气中、朝出租车方向看但不挥手的人仍然被认为是潜在的乘客。因此,我们提出的新方法将视觉和上下文信息集成到我们设计的计算机视觉管道中,该管道用于从安装在移动出租车上的捕获设备采集的视频流中检测出租车扬招案例。我们使用在突尼斯道路上行驶的出租车收集的数据集测试了我们的管道。考虑到明确和隐含的扬招场景,我们的方法在相对现实的环境中取得了令人满意的结果,准确率为 80%,精度为 84%,召回率为 84%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e963/10224332/603fad2be3f0/sensors-23-04796-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验