Suppr超能文献

朝着蛋白质模拟的通用神经网络力场迈进:蛋白质中分子内相互作用的改进。

Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Chem Phys. 2023 Jul 14;159(2). doi: 10.1063/5.0142280.

Abstract

Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.

摘要

分子动力学(MD)是一种极其强大、高效且广泛应用的方法,可以深入了解蛋白质中化学过程的原子本质。MD 模拟结果的准确性高度依赖于力场。目前,由于计算成本低,分子力学(MM)力场主要用于 MD 模拟。量子力学(QM)计算具有高精度,但对于蛋白质模拟来说,计算量极大。机器学习(ML)为在 QM 水平上生成准确的势能提供了能力,而不会对可以在 QM 水平上研究的特定系统增加太多计算工作量。然而,构建用于广泛应用和大型复杂系统的通用机器学习力场仍然具有挑战性。在这里,通过在基于残基的系统分子碎片化(rSMF)方法分割的 27 个片段上训练 NN 模型,为蛋白质构建了基于 CHARMM 力场的通用和可转移神经网络(NN)力场,命名为 CHARMM-NN。每个片段的 NN 基于原子类型,并使用类似于 MM 输入的新输入特征,包括键、角、二面角和非键项,这增强了 CHARMM-NN 与 MM MD 的兼容性,并使 CHARMM-NN 力场能够在不同的 MD 程序中实现。虽然蛋白质的主要能量部分基于 rSMF 和 NN,但片段之间以及与水之间的非键相互作用则通过机械嵌入从 CHARMM 力场中获取。该方法在二肽的几何数据、相对势能和结构重排能上的验证表明,CHARMM-NN 在势能面上的局部最小值非常接近 QM,表明 CHARMM-NN 对键相互作用的成功。然而,对肽和蛋白质的 MD 模拟表明,在未来的 CHARMM-NN 改进中,应该考虑更准确的方法来表示片段中的蛋白质-水相互作用和片段之间的非键相互作用,这可以提高逼近精度,超越当前的机械嵌入 QM/MM 水平。

相似文献

2
Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
J Chem Theory Comput. 2019 Feb 12;15(2):1409-1417. doi: 10.1021/acs.jctc.8b00895. Epub 2019 Jan 7.
3
Machine learning builds full-QM precision protein force fields in seconds.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab158.
4
Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
J Chem Theory Comput. 2018 Mar 13;14(3):1442-1455. doi: 10.1021/acs.jctc.7b01195. Epub 2018 Feb 26.
7
Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
J Phys Chem B. 2020 Apr 16;124(15):3027-3035. doi: 10.1021/acs.jpcb.0c01370. Epub 2020 Apr 3.
9
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.

本文引用的文献

2
Better force fields start with better data: A data set of cation dipeptide interactions.
Sci Data. 2022 Jun 17;9(1):327. doi: 10.1038/s41597-022-01297-3.
4
Deep Learning Coordinate-Free Quantum Chemistry.
J Phys Chem A. 2021 Oct 14;125(40):8978-8986. doi: 10.1021/acs.jpca.1c04462. Epub 2021 Oct 5.
5
Machine learning of solvent effects on molecular spectra and reactions.
Chem Sci. 2021 Jul 23;12(34):11473-11483. doi: 10.1039/d1sc02742e. eCollection 2021 Sep 1.
6
Unifying coarse-grained force fields for folded and disordered proteins.
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.
7
Gaussian Process Regression for Materials and Molecules.
Chem Rev. 2021 Aug 25;121(16):10073-10141. doi: 10.1021/acs.chemrev.1c00022. Epub 2021 Aug 16.
8
Machine Learning Force Fields: Recent Advances and Remaining Challenges.
J Phys Chem Lett. 2021 Jul 22;12(28):6551-6564. doi: 10.1021/acs.jpclett.1c01204. Epub 2021 Jul 9.
9
Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Applications of KBFF20.
J Chem Theory Comput. 2021 May 11;17(5):2991-3009. doi: 10.1021/acs.jctc.1c00076. Epub 2021 Apr 20.
10
Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20.
J Chem Theory Comput. 2021 May 11;17(5):2964-2990. doi: 10.1021/acs.jctc.1c00075. Epub 2021 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验