Suppr超能文献

解析超增强子驱动基因的机制见解作为胶质母细胞瘤患者的预后标志物。

Mechanistic insights into super-enhancer-driven genes as prognostic signatures in patients with glioblastoma.

机构信息

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China.

School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.

出版信息

J Cancer Res Clin Oncol. 2023 Oct;149(13):12315-12332. doi: 10.1007/s00432-023-05121-2. Epub 2023 Jul 11.

Abstract

BACKGROUND

Glioblastoma (GBM) is one of the most common malignant brain tumors in adults and is characterized by high aggressiveness and rapid progression, poor treatment, high recurrence rate, and poor prognosis. Although super-enhancer (SE)-driven genes haven been recognized as prognostic markers for several cancers, whether it can be served as effective prognostic markers for patients with GBM has not been evaluated.

METHODS

We first combined histone modification data with transcriptome data to identify SE-driven genes associated with prognosis in patients with GBM. Second, we developed a SE-driven differentially expressed genes (SEDEGs) risk score prognostic model by univariate Cox analysis, KM survival analysis, multivariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression. Its reliability in predicting was verified by two external data sets. Third, through mutation analysis, immune infiltration, we explored the molecular mechanisms of prognostic genes. Next, Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map (cMap) database were employed to assess different sensitivities to chemotherapeutic agents and small-molecule drug candidates between high- and low-risk patients. Finally, SEanalysis database was chosen to identify SE-driven transcription factors (TFs) regulating prognostic markers which will reveal a potential SE-driven transcriptional regulatory network.

RESULTS

First, we developed a 11-gene risk score prognostic model (NCF2, MTHFS, DUSP6, G6PC3, HOXB2, EN2, DLEU1, LBH, ZEB1-AS1, LINC01265, and AGAP2-AS1) selected from 1,154 SEDEGs, which is not only an independent prognostic factor for patients, but also can effectively predict the survival rate of patients. The model can effectively predict 1-, 2- and 3-year survival of patients and was validated in external Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. Second, the risk score was positively correlated with the infiltration of regulatory T cell, CD4 memory activated T cell, activated NK cell, neutrophil, resting mast cell, M0 macrophage, and memory B cell. Third, we found that high-risk patients showed higher sensitivity than low-risk patients to both 27 chemotherapeutic agents and 4 small-molecule drug candidates which might benefit further precision therapy for GBM patients. Finally, 13 potential SE-driven TFs imply how SE regulates GBM patient's prognosis.

CONCLUSION

The SEDEG risk model not only helps to elucidate the impact of SEs on the course of GBM, but also provides a bright future for prognosis determination and choice of treatment for GBM patients.

摘要

背景

胶质母细胞瘤(GBM)是成人中最常见的恶性脑肿瘤之一,其特点是侵袭性强、进展迅速、治疗效果差、复发率高、预后差。尽管超级增强子(SE)驱动的基因已被认为是几种癌症的预后标志物,但它是否能作为 GBM 患者的有效预后标志物尚未得到评估。

方法

我们首先将组蛋白修饰数据与转录组数据相结合,以鉴定与 GBM 患者预后相关的 SE 驱动基因。其次,我们通过单因素 Cox 分析、KM 生存分析、多因素 Cox 分析和最小绝对值收缩和选择算子(LASSO)回归,开发了一个 SE 驱动差异表达基因(SEDEGs)风险评分预后模型。我们通过两个外部数据集验证了其预测的可靠性。第三,通过突变分析、免疫浸润,我们探讨了预后基因的分子机制。接下来,我们使用癌症药物敏感性基因组学(GDSC)和连接图谱(cMap)数据库评估高风险和低风险患者对化疗药物和小分子药物候选物的不同敏感性。最后,我们选择 SEanalysis 数据库来鉴定调控预后标志物的 SE 驱动转录因子(TFs),这将揭示一个潜在的 SE 驱动转录调控网络。

结果

首先,我们从 1154 个 SEDEGs 中开发了一个由 11 个基因组成的风险评分预后模型(NCF2、MTHFS、DUSP6、G6PC3、HOXB2、EN2、DLEU1、LBH、ZEB1-AS1、LINC01265 和 AGAP2-AS1),该模型不仅是患者的独立预后因素,而且可以有效预测患者的生存率。该模型可以有效地预测患者 1 年、2 年和 3 年的生存率,并在外部中国胶质瘤基因组图谱(CGGA)和基因表达综合数据库(GEO)数据集得到验证。其次,风险评分与调节性 T 细胞、CD4 记忆激活 T 细胞、激活的 NK 细胞、中性粒细胞、静止肥大细胞、M0 巨噬细胞和记忆 B 细胞的浸润呈正相关。第三,我们发现高危患者对 27 种化疗药物和 4 种小分子药物候选物的敏感性均高于低危患者,这可能有利于进一步为 GBM 患者进行精准治疗。最后,13 个潜在的 SE 驱动 TFs 表明 SE 是如何调节 GBM 患者的预后的。

结论

SEDEG 风险模型不仅有助于阐明 SE 对 GBM 病程的影响,而且为 GBM 患者的预后判断和治疗选择提供了广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验