School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131-0001, USA.
G3 (Bethesda). 2023 Sep 30;13(10). doi: 10.1093/g3journal/jkad143.
RNA-sequencing (RNA-seq) technology has led to a surge of neuroscience research using animal models to probe the complex molecular mechanisms underlying brain function and behavior, including substance use disorders. However, findings from rodent studies often fail to be translated into clinical treatments. Here, we developed a novel pipeline for narrowing candidate genes from preclinical studies by translational potential and demonstrated its utility in 2 RNA-seq studies of rodent self-administration. This pipeline uses evolutionary conservation and preferential expression of genes across brain tissues to prioritize candidate genes, increasing the translational utility of RNA-seq in model organisms. Initially, we demonstrate the utility of our prioritization pipeline using an uncorrected P-value. However, we found no differentially expressed genes in either dataset after correcting for multiple testing with false discovery rate (FDR < 0.05 or <0.1). This is likely due to low statistical power that is common across rodent behavioral studies, and, therefore, we additionally illustrate the use of our pipeline on a third dataset with differentially expressed genes corrected for multiple testing (FDR < 0.05). We also advocate for improved RNA-seq data collection, statistical testing, and metadata reporting that will bolster the field's ability to identify reliable candidate genes and improve the translational value of bioinformatics in rodent research.
RNA 测序 (RNA-seq) 技术推动了神经科学研究的发展,利用动物模型来探究大脑功能和行为背后复杂的分子机制,包括物质使用障碍。然而,啮齿动物研究的发现往往未能转化为临床治疗。在这里,我们开发了一种新的方法,通过翻译潜力从临床前研究中缩小候选基因的范围,并在 2 项啮齿动物自我给药的 RNA-seq 研究中证明了其效用。该方法利用基因在大脑组织中的进化保守性和优先表达来优先考虑候选基因,提高了 RNA-seq 在模型生物中的翻译实用性。最初,我们使用未校正的 P 值证明了我们的优先级排序管道的效用。然而,在对多个测试进行错误发现率 (FDR < 0.05 或 <0.1) 校正后,我们在两个数据集都没有发现差异表达的基因。这可能是由于啮齿动物行为研究中常见的统计功效较低,因此,我们还在第三个数据集上展示了我们的管道的使用,该数据集对多个测试进行了差异表达基因校正 (FDR < 0.05)。我们还提倡改进 RNA-seq 数据收集、统计检验和元数据报告,这将增强该领域识别可靠候选基因的能力,并提高生物信息学在啮齿动物研究中的翻译价值。