Suppr超能文献

PhysNet 与 CHARMM 的结合:一种常规机器学习/分子力学模拟的框架。

PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations.

机构信息

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

出版信息

J Chem Phys. 2023 Jul 14;159(2). doi: 10.1063/5.0155992.

Abstract

Full-dimensional potential energy surfaces (PESs) based on machine learning (ML) techniques provide a means for accurate and efficient molecular simulations in the gas and condensed phase for various experimental observables ranging from spectroscopy to reaction dynamics. Here, the MLpot extension with PhysNet as the ML-based model for a PES is introduced into the newly developed pyCHARMM application programming interface. To illustrate the conception, validation, refining, and use of a typical workflow, para-chloro-phenol is considered as an example. The main focus is on how to approach a concrete problem from a practical perspective and applications to spectroscopic observables and the free energy for the -OH torsion in solution are discussed in detail. For the computed IR spectra in the fingerprint region, the computations for para-chloro-phenol in water are in good qualitative agreement with experiment carried out in CCl4. Moreover, relative intensities are largely consistent with experimental findings. The barrier for rotation of the -OH group increases from ∼3.5 kcal/mol in the gas phase to ∼4.1 kcal/mol from simulations in water due to favorable H-bonding interactions of the -OH group with surrounding water molecules.

摘要

基于机器学习 (ML) 技术的全维势能面 (PES) 为各种实验观测值(从光谱学到反应动力学)提供了在气相和凝聚相进行准确和高效分子模拟的手段。这里,将 MLpot 扩展与 PhysNet 作为 PES 的基于 ML 的模型引入到新开发的 pyCHARMM 应用程序编程接口中。为了说明概念、验证、细化和使用典型工作流程,以对氯苯酚为例进行了考虑。主要重点是如何从实际角度处理具体问题,并将其应用于光谱观测值以及溶液中 -OH 扭转的自由能。对于在指纹区域计算的 IR 光谱,在 CCl4 中进行的对氯苯酚的计算在定性上与实验结果一致。此外,相对强度与实验结果基本一致。由于 -OH 基团与周围水分子的有利氢键相互作用,-OH 基团旋转的势垒从气相中的约 3.5 kcal/mol 增加到水中的约 4.1 kcal/mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验