Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Nature. 2023 Jul;619(7971):868-875. doi: 10.1038/s41586-023-06323-x. Epub 2023 Jul 12.
Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.
增强子通过与长程启动子结合来决定时空基因表达程序。然而,增强子如何找到其同源启动子仍然未知。我们最近开发了一种 RNA 原位构象测序技术,通过成对相互作用的增强子 RNA 和启动子衍生的非编码 RNA 来识别增强子-启动子连接。在这里,我们应用这项技术在另外六个细胞系中生成高可信度的增强子-启动子 RNA 相互作用图谱。使用这些图谱,我们发现 37.9%的增强子-启动子 RNA 相互作用位点与 Alu 序列重叠。这些成对相互作用的 Alu 和非 Alu RNA 序列往往是互补的,并可能形成双链。Alu 元件的敲除会破坏增强子-启动子环,但 Alu 插入或 CRISPR-dCasRx 介导的 Alu 与未调节的启动子 RNA 结合可以创建新的环到同源增强子。将 535,404 个非编码风险变异映射回增强子-启动子 RNA 相互作用图谱,使我们能够构建变异到功能图谱,以解释它们的分子功能,包括在 11,677 个 Alu 元件中的 15,318 个缺失或插入,影响 6,497 个蛋白质编码基因。我们进一步证明,PTK2 增强子的多态性 Alu 插入可以促进肿瘤发生。我们的研究揭示了决定增强子-启动子配对特异性的原则,并提供了一个将非编码风险变异与其分子功能联系起来的框架。