Suppr超能文献

混合改进时间卷积网络模型在河流水质时间序列预测中的应用。

Application of hybrid improved temporal convolution network model in time series prediction of river water quality.

机构信息

Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, 110168, Liaoning, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Sci Rep. 2023 Jul 12;13(1):11260. doi: 10.1038/s41598-023-38465-3.

Abstract

Time series prediction of river water quality is an important method to grasp the changes of river water quality and protect the river water environment. However, due to the time series data of river water quality have strong periodicity, seasonality and nonlinearity, which seriously affects the accuracy of river water quality prediction. In this paper, a new hybrid deep neural network model is proposed for river water quality prediction, which is integrated with Savitaky-Golay (SG) filter, STL time series decomposition method, Self-attention mechanism, and Temporal Convolutional Network (TCN). The SG filter can effectively remove the noise in the time series data of river water quality, and the STL technology can decompose the time series data into trend, seasonal and residual series. The decomposed trend series and residual series are input into the model combining the Self-attention mechanism and TCN respectively for training and prediction. In order to verify the proposed model, this study uses opensource water quality data and private water quality data to conduct experiments, and compares with other water quality prediction models. The experimental results show that our method achieves the best prediction results in the water quality data of two different rivers.

摘要

河流水质时间序列预测是掌握河流水质变化、保护河流水环境的重要方法。然而,由于河流水质时间序列数据具有很强的周期性、季节性和非线性,严重影响了河流水质预测的准确性。本文提出了一种新的混合深度神经网络模型,用于河流水质预测,该模型集成了 Savitaky-Golay (SG) 滤波器、STL 时间序列分解方法、自注意力机制和时间卷积网络 (TCN)。SG 滤波器可以有效地去除河流水质时间序列数据中的噪声,STL 技术可以将时间序列数据分解为趋势、季节性和残差序列。分解后的趋势序列和残差序列分别输入到结合自注意力机制和 TCN 的模型中进行训练和预测。为了验证所提出的模型,本研究使用开源水质数据和私有水质数据进行实验,并与其他水质预测模型进行比较。实验结果表明,我们的方法在两条不同河流的水质数据上取得了最佳的预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/958d/10338427/cc66f8d186eb/41598_2023_38465_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验