Huang Zhen, Zhao Shiji, Cieplak Piotr, Duan Yong, Luo Ray, Wei Haixin
Chemical and Materials Physics Graduate Program, University of California, Irvine. Irvine, California 92697, United States.
Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine. Irvine, California 92697, United States.
J Chem Theory Comput. 2023 Aug 8;19(15):5047-5057. doi: 10.1021/acs.jctc.3c00226. Epub 2023 Jul 13.
Induced dipole models have proven to be effective tools for simulating electronic polarization effects in biochemical processes, yet their potential has been constrained by energy conservation issue, particularly when historical data is utilized for dipole prediction. This study identifies error outliers as the primary factor causing this failure of energy conservation and proposes a comprehensive scheme to overcome this limitation. Leveraging maximum relative errors as a convergence metric, our data demonstrates that energy conservation can be upheld even when using historical information for dipole predictions. Our study introduces the multi-order extrapolation method to quicken induction iteration and optimize the use of historical data, while also developing the preconditioned conjugate gradient with local iterations to refine the iteration process and effectively remove error outliers. This scheme further incorporates a "peek" step via Jacobi under-relaxation for optimal performance. Simulation evidence suggests that our proposed scheme can achieve energy convergence akin to that of point-charge models within a limited number of iterations, thus promising significant improvements in efficiency and accuracy.
诱导偶极子模型已被证明是模拟生化过程中电子极化效应的有效工具,但其潜力受到能量守恒问题的限制,特别是在利用历史数据进行偶极子预测时。本研究将误差异常值确定为导致能量守恒失败的主要因素,并提出了一个全面的方案来克服这一限制。利用最大相对误差作为收敛指标,我们的数据表明,即使使用历史信息进行偶极子预测,也能维持能量守恒。我们的研究引入了多阶外推法来加快诱导迭代并优化历史数据的使用,同时还开发了带有局部迭代的预处理共轭梯度法来优化迭代过程并有效去除误差异常值。该方案还通过雅可比欠松弛法纳入了一个“窥探”步骤以实现最佳性能。模拟证据表明,我们提出的方案能够在有限的迭代次数内实现类似于点电荷模型的能量收敛,从而有望在效率和准确性方面取得显著提高。