Suppr超能文献

加筋薄壁结构形状传感的混合壳梁逆有限元法:复合材料翼型板的公式推导与实验验证。

Hybrid Shell-Beam Inverse Finite Element Method for the Shape Sensing of Stiffened Thin-Walled Structures: Formulation and Experimental Validation on a Composite Wing-Shaped Panel.

机构信息

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy.

Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, 10129 Torino, Italy.

出版信息

Sensors (Basel). 2023 Jun 27;23(13):5962. doi: 10.3390/s23135962.

Abstract

This work presents a novel methodology for the accurate and efficient elastic deformation reconstruction of thin-walled and stiffened structures from discrete strains. It builds on the inverse finite element method (iFEM), a variationally-based shape-sensing approach that reconstructs structural displacements by matching a set of analytical and experimental strains in a least-squares sense. As iFEM employs the finite element framework to discretize the structural domain and as the displacements and strains are approximated using element shape functions, the kind of element used influences the accuracy and efficiency of the iFEM analysis. This problem is addressed in the present work through a novel discretization scheme that combines beam and shell inverse elements to develop an iFEM model of the structure. Such a hybrid discretization paradigm paves the way for more accurate shape-sensing of geometrically complex structures using fewer sensor measurements and lower computational effort than traditional approaches. The hybrid iFEM is experimentally demonstrated in this work for the shape sensing of bending and torsional deformations of a composite stiffened wing panel instrumented with strain rosettes and fiber-optic sensors. The experimental results are accurate, robust, and computationally efficient, demonstrating the potential of this hybrid scheme for developing an efficient digital twin for online structural monitoring and control.

摘要

这项工作提出了一种新颖的方法,用于从离散应变中准确有效地重建薄壁加筋结构的弹性变形。它基于逆有限元法(iFEM),这是一种基于变分的形状感知方法,通过在最小二乘意义上匹配一组分析和实验应变来重建结构位移。由于 iFEM 使用有限元框架对结构域进行离散化,并且位移和应变使用单元形状函数进行近似,因此所使用的单元类型会影响 iFEM 分析的准确性和效率。本工作通过一种新颖的离散化方案解决了这个问题,该方案结合了梁和壳逆单元来开发结构的 iFEM 模型。这种混合离散化范例为使用更少的传感器测量和更低的计算成本对几何形状复杂的结构进行更精确的形状感知铺平了道路,这是传统方法所无法比拟的。在这项工作中,混合 iFEM 用于通过应变花和光纤传感器对复合材料加筋机翼的弯曲和扭转变形进行形状感知,实验结果准确、稳健且计算效率高,证明了这种混合方案用于开发在线结构监测和控制的有效数字孪生的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e9/10346927/3994b36b4475/sensors-23-05962-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验