School of Automation, Harbin University of Science and Technology, Harbin 150080, China.
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China.
Sensors (Basel). 2023 Jul 7;23(13):6239. doi: 10.3390/s23136239.
In this paper, we design a technologically intelligent wheelchair with eye-movement control for patients with ALS in a natural environment. The system consists of an electric wheelchair, a vision system, a two-dimensional robotic arm, and a main control system. The smart wheelchair obtains the eye image of the controller through a monocular camera and uses deep learning and an attention mechanism to calculate the eye-movement direction. In addition, starting from the relationship between the trajectory of the joystick and the wheelchair speed, we establish a motion acceleration model of the smart wheelchair, which reduces the sudden acceleration of the smart wheelchair during rapid motion and improves the smoothness of the motion of the smart wheelchair. The lightweight eye-movement recognition model is transplanted into an embedded AI controller. The test results show that the accuracy of eye-movement direction recognition is 98.49%, the wheelchair movement speed is up to 1 m/s, and the movement trajectory is smooth, without sudden changes.
在本文中,我们设计了一种具有眼部运动控制功能的技术智能轮椅,用于 ALS 患者在自然环境中的使用。该系统由电动轮椅、视觉系统、二维机械臂和主控制系统组成。智能轮椅通过单目摄像机获取控制器的眼部图像,并使用深度学习和注意力机制来计算眼部运动方向。此外,从操纵杆的轨迹与轮椅速度之间的关系出发,我们建立了智能轮椅的运动加速度模型,减少了智能轮椅在快速运动过程中的突然加速,提高了智能轮椅运动的平稳性。将轻量化的眼部运动识别模型移植到嵌入式 AI 控制器中。测试结果表明,眼部运动方向识别的准确率达到 98.49%,轮椅的移动速度可达 1 m/s,运动轨迹平滑,没有突变。