Suppr超能文献

利用放射影像数据检测颞下颌关节骨关节炎的人工智能:诊断试验准确性的系统评价和荟萃分析

Artificial intelligence for detecting temporomandibular joint osteoarthritis using radiographic image data: A systematic review and meta-analysis of diagnostic test accuracy.

作者信息

Xu Liang, Chen Jiang, Qiu Kaixi, Yang Feng, Wu Weiliang

机构信息

The School of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.

Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.

出版信息

PLoS One. 2023 Jul 14;18(7):e0288631. doi: 10.1371/journal.pone.0288631. eCollection 2023.

Abstract

In this review, we assessed the diagnostic efficiency of artificial intelligence (AI) models in detecting temporomandibular joint osteoarthritis (TMJOA) using radiographic imaging data. Based upon the PRISMA guidelines, a systematic review of studies published between January 2010 and January 2023 was conducted using PubMed, Web of Science, Scopus, and Embase. Articles on the accuracy of AI to detect TMJOA or degenerative changes by radiographic imaging were selected. The characteristics and diagnostic information of each article were extracted. The quality of studies was assessed by the QUADAS-2 tool. Pooled data for sensitivity, specificity, and summary receiver operating characteristic curve (SROC) were calculated. Of 513 records identified through a database search, six met the inclusion criteria and were collected. The pooled sensitivity, specificity, and area under the curve (AUC) were 80%, 90%, and 92%, respectively. Substantial heterogeneity between AI models mainly arose from imaging modality, ethnicity, sex, techniques of AI, and sample size. This article confirmed AI models have enormous potential for diagnosing TMJOA automatically through radiographic imaging. Therefore, AI models appear to have enormous potential to diagnose TMJOA automatically using radiographic images. However, further studies are needed to evaluate AI more thoroughly.

摘要

在本综述中,我们使用放射成像数据评估了人工智能(AI)模型在检测颞下颌关节骨关节炎(TMJOA)方面的诊断效率。根据PRISMA指南,我们使用PubMed、科学网、Scopus和Embase对2010年1月至2023年1月发表的研究进行了系统综述。选取了关于AI通过放射成像检测TMJOA或退行性改变准确性的文章。提取了每篇文章的特征和诊断信息。采用QUADAS - 2工具评估研究质量。计算了敏感性、特异性和汇总受试者工作特征曲线(SROC)的合并数据。通过数据库检索确定的513条记录中,有6条符合纳入标准并被收集。合并后的敏感性、特异性和曲线下面积(AUC)分别为80%、90%和92%。AI模型之间的显著异质性主要源于成像方式、种族、性别、AI技术和样本量。本文证实了AI模型在通过放射成像自动诊断TMJOA方面具有巨大潜力。因此,AI模型似乎在使用放射图像自动诊断TMJOA方面具有巨大潜力。然而,需要进一步研究以更全面地评估AI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/196c/10348514/39de06831fa7/pone.0288631.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验