Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands.
United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
J Biol Chem. 2023 Sep;299(9):105047. doi: 10.1016/j.jbc.2023.105047. Epub 2023 Jul 13.
Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing C-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B metabolism, and mitochondrial oxidative metabolism.
最近,编码吡哆醛 5'-磷酸酯酶(PLPHP)的 PLPBP 双等位基因变异被确定为早发性维生素 B 依赖性癫痫的新病因。PLPHP 在维生素 B 代谢中的分子功能和确切作用尚不清楚。为了解决这些问题,我们使用 PLPHP 缺陷患者的皮肤成纤维细胞和 HEK293 细胞以及 YBL036C(PLPHP 同源物)缺陷酵母。我们表明,无论细胞外 B 维生素类型(吡哆醇、吡哆胺或吡哆醛)如何,PLPHP 缺陷成纤维细胞和 HEK293 细胞中的细胞内吡哆醛 5'-磷酸(PLP)均低于对照。用吡哆醇或吡哆胺培养细胞分别导致吡哆醇 5'-磷酸和吡哆胺 5'-磷酸(PMP)的浓度依赖性积累,表明吡哆(氨)醇 5'-磷酸氧化酶活性不足。利用 C-吡哆醇进行的实验证实了较低的吡哆(氨)醇 5'-磷酸氧化酶活性,并揭示了 PLP 和吡哆醛的增加部分周转率,表明 PLPHP 缺陷细胞中 PLP 水解为吡哆醛增加。这种效应可以部分被吡哆醛磷酸酶失活所抵消。PLPHP 缺陷对线粒体 PLP 和 PMP 有明显影响,表明线粒体转氨酶活性受损。此外,在 YBL036C 缺陷酵母中,仅在用需要线粒体代谢的碳源时,PLP 耗尽,PMP 积累。乳酸和丙酮酸的积累以及三羧酸循环中间产物在α-酮戊二酸下游的减少表明 PLPHP 缺陷 HEK293 细胞中线粒体氧化代谢受损。我们假设线粒体转氨酶活性的降低可能导致这种消耗。总之,我们的研究为 PLPBP 缺陷的发病机制提供了新的见解,并加强了 PLPHP 功能、维生素 B 代谢和线粒体氧化代谢之间的联系。