Suppr超能文献

多发性硬化症的多模态诊断:预测残疾和从复发缓解型向继发性进展型病程的转化-系统评价和荟萃分析方案。

Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsing-remitting to secondary progressive disease course - protocol for systematic review and meta-analysis.

机构信息

Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE

Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE.

出版信息

BMJ Open. 2023 Jul 14;13(7):e068608. doi: 10.1136/bmjopen-2022-068608.

Abstract

BACKGROUND

The number of patients diagnosed with multiple sclerosis (MS) has increased significantly over the last decade. The challenge is to identify the transition from relapsing-remitting to secondary progressive MS. Since available methods to examine patients with MS are limited, both the diagnostics and prognostication of disease progression would benefit from the multimodal approach. The latter combines the evidence obtained from disparate radiologic modalities, neurophysiological evaluation, cognitive assessment and molecular diagnostics. In this systematic review we will analyse the advantages of multimodal studies in predicting the risk of conversion to secondary progressive MS.

METHODS AND ANALYSIS

We will use peer-reviewed publications available in Web of Science, Medline/PubMed, Scopus, Embase and CINAHL databases. In vivo studies reporting the predictive value of diagnostic methods will be considered. Selected publications will be processed through Covidence software for automatic deduplication and blind screening. Two reviewers will use a predefined template to extract the data from eligible studies. We will analyse the performance metrics (1) for the classification models reflecting the risk of secondary progression: sensitivity, specificity, accuracy, area under the receiver operating characteristic curve, positive and negative predictive values; (2) for the regression models forecasting disability scores: the ratio of mean absolute error to the range of values. Then, we will create ranking charts representing performance of the algorithms for calculating disability level and MS progression. Finally, we will compare the predictive power of radiological and radiomical correlates of clinical disability and cognitive impairment in patients with MS.

ETHICS AND DISSEMINATION

The study does not require ethical approval because we will analyse publicly available literature. The project results will be published in a peer-review journal and presented at scientific conferences.

PROSPERO REGISTRATION NUMBER

CRD42022354179.

摘要

背景

过去十年中,多发性硬化症 (MS) 的确诊患者数量显著增加。挑战在于识别从复发缓解型向继发进展型 MS 的转变。由于用于检查 MS 患者的方法有限,因此疾病进展的诊断和预后都将受益于多模态方法。该方法结合了来自不同放射学模式、神经生理学评估、认知评估和分子诊断的证据。在本系统评价中,我们将分析多模态研究在预测继发进展型 MS 风险中的优势。

方法和分析

我们将使用 Web of Science、Medline/PubMed、Scopus、Embase 和 CINAHL 数据库中可获得的同行评审出版物。将考虑报告诊断方法预测价值的体内研究。选择的出版物将通过 Covidence 软件进行自动去重和盲法筛选。两名审查员将使用预定义模板从合格研究中提取数据。我们将分析反映继发进展风险的分类模型的性能指标 (1):敏感性、特异性、准确性、接收者操作特征曲线下面积、阳性和阴性预测值;(2) 用于预测残疾评分的回归模型:平均绝对误差与值范围的比值。然后,我们将创建表示用于计算残疾水平和 MS 进展的算法性能的排名图表。最后,我们将比较 MS 患者的临床残疾和认知障碍的放射学和放射学相关的预测能力。

伦理与传播

该研究不需要伦理批准,因为我们将分析公开可用的文献。项目结果将发表在同行评审期刊上,并在科学会议上展示。

PROSPERO 注册号:CRD42022354179。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27e1/10351237/430484599f2f/bmjopen-2022-068608f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验