Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA.
Small. 2023 Nov;19(46):e2304880. doi: 10.1002/smll.202304880. Epub 2023 Jul 14.
Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.
多孔贵金属纳米粒子因其在生物医学领域独特的光学、热学和催化功能而受到特别关注。然而,目前在合成具有大介孔(≥25nm)的多孔金属纳米结构方面进展有限。在这里,我们报道了一种绿色且简便的合成策略,使用生物相容性脂质体作为模板,以可控的方式介导介孔金属纳米结构的形成。通过单金属(Au、Pd 和 Pt)、双金属(AuPd、AuPt、AuRh、PtRh 和 PdPt)和三金属(AuPdRh、AuPtRh 和 AuPdPt)成功合成了各种具有明确介孔形状和大介孔(≈40nm)的单分散纳米结构。除了成功证明其在合成各种介孔纳米结构方面的有效性外,还通过合成过程的时间分段(监测介孔结构的时间分辨生长)和计算量子分子建模(在焓水平上分析金属阳离子和脂质体之间的化学相互作用能)揭示了脂质体引导形成这种纳米结构的可能机制。这些介孔金属纳米结构在近红外区域表现出强烈的光热效应,在过氧化氢分解反应中具有有效的催化活性,并且具有高药物负载能力。因此,脂质体模板法为合成用于各种生物医学应用的介孔贵金属基纳米结构提供了一个鼓舞人心和强大的途径。