Suppr超能文献

急性肺栓塞的诊断管理:基于患者数据荟萃分析的预测模型。

Diagnostic management of acute pulmonary embolism: a prediction model based on a patient data meta-analysis.

机构信息

Amsterdam University Medical Center, Department of Vascular Medicine, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

出版信息

Eur Heart J. 2023 Aug 22;44(32):3073-3081. doi: 10.1093/eurheartj/ehad417.

Abstract

AIMS

Risk stratification is used for decisions regarding need for imaging in patients with clinically suspected acute pulmonary embolism (PE). The aim was to develop a clinical prediction model that provides an individualized, accurate probability estimate for the presence of acute PE in patients with suspected disease based on readily available clinical items and D-dimer concentrations.

METHODS AND RESULTS

An individual patient data meta-analysis was performed based on sixteen cross-sectional or prospective studies with data from 28 305 adult patients with clinically suspected PE from various clinical settings, including primary care, emergency care, hospitalized and nursing home patients. A multilevel logistic regression model was built and validated including ten a priori defined objective candidate predictors to predict objectively confirmed PE at baseline or venous thromboembolism (VTE) during follow-up of 30 to 90 days. Multiple imputation was used for missing data. Backward elimination was performed with a P-value <0.10. Discrimination (c-statistic with 95% confidence intervals [CI] and prediction intervals [PI]) and calibration (outcome:expected [O:E] ratio and calibration plot) were evaluated based on internal-external cross-validation. The accuracy of the model was subsequently compared with algorithms based on the Wells score and D-dimer testing. The final model included age (in years), sex, previous VTE, recent surgery or immobilization, haemoptysis, cancer, clinical signs of deep vein thrombosis, inpatient status, D-dimer (in µg/L), and an interaction term between age and D-dimer. The pooled c-statistic was 0.87 (95% CI, 0.85-0.89; 95% PI, 0.77-0.93) and overall calibration was very good (pooled O:E ratio, 0.99; 95% CI, 0.87-1.14; 95% PI, 0.55-1.79). The model slightly overestimated VTE probability in the lower range of estimated probabilities. Discrimination of the current model in the validation data sets was better than that of the Wells score combined with a D-dimer threshold based on age (c-statistic 0.73; 95% CI, 0.70-0.75) or structured clinical pretest probability (c-statistic 0.79; 95% CI, 0.76-0.81).

CONCLUSION

The present model provides an absolute, individualized probability of PE presence in a broad population of patients with suspected PE, with very good discrimination and calibration. Its clinical utility needs to be evaluated in a prospective management or impact study.

REGISTRATION

PROSPERO ID 89366.

摘要

目的

风险分层用于对疑似急性肺栓塞(PE)的临床患者进行影像学检查的决策。本研究旨在开发一种临床预测模型,该模型基于易于获得的临床项目和 D-二聚体浓度,为疑似疾病患者的急性 PE 提供个体化、准确的概率估计。

方法和结果

对来自不同临床环境(包括初级保健、急诊、住院和疗养院)的 28305 例疑似 PE 的成年患者的 16 项横断面或前瞻性研究进行了个体患者数据荟萃分析。建立并验证了一个多水平逻辑回归模型,该模型包含 10 个预先定义的客观候选预测因子,以预测基线时的客观证实性 PE 或 30 至 90 天随访期间的静脉血栓栓塞(VTE)。对缺失数据使用多重插补。采用 P<0.10 的方法进行逐步向后淘汰。根据内部-外部交叉验证评估了区分度(c 统计量及其 95%置信区间[CI]和预测区间[PI])和校准(结局:预期比[O:E]和校准图)。随后将该模型的准确性与基于 Wells 评分和 D-二聚体检测的算法进行比较。最终模型包括年龄(岁)、性别、既往 VTE、近期手术或制动、咯血、癌症、深静脉血栓形成的临床体征、住院状态、D-二聚体(μg/L)和年龄与 D-二聚体之间的交互项。汇总的 c 统计量为 0.87(95%CI,0.85-0.89;95%PI,0.77-0.93),整体校准效果非常好(汇总 O:E 比,0.99;95%CI,0.87-1.14;95%PI,0.55-1.79)。该模型在估计概率较低的范围内略微高估了 VTE 概率。在验证数据集,当前模型的区分度优于基于 Wells 评分结合年龄 D-二聚体阈值(c 统计量 0.73;95%CI,0.70-0.75)或结构化临床预测试验概率(c 统计量 0.79;95%CI,0.76-0.81)的组合。

结论

该模型为疑似 PE 患者提供了广泛人群中存在 PE 的绝对个体化概率,具有很好的区分度和校准效果。其临床实用性需要在前瞻性管理或影响研究中进行评估。

登记

PROSPERO ID 89366。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/066e/10917087/4169d813cc70/ehad417_ga1.jpg

相似文献

1
Diagnostic management of acute pulmonary embolism: a prediction model based on a patient data meta-analysis.
Eur Heart J. 2023 Aug 22;44(32):3073-3081. doi: 10.1093/eurheartj/ehad417.
2
Is stand-alone D-dimer testing safe to rule out acute pulmonary embolism?
J Thromb Haemost. 2017 Feb;15(2):323-328. doi: 10.1111/jth.13574. Epub 2016 Dec 24.
3
Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study.
JAMA. 2014 Mar 19;311(11):1117-24. doi: 10.1001/jama.2014.2135.
7
Sex-related differences in D-dimer levels for venous thromboembolism screening.
Acad Emerg Med. 2021 Aug;28(8):873-881. doi: 10.1111/acem.14220. Epub 2021 Apr 7.
8
Variable D-dimer thresholds for diagnosis of clinically suspected acute pulmonary embolism.
J Thromb Haemost. 2013 Nov;11(11):1986-92. doi: 10.1111/jth.12394.
10
Rapid quantitative D-dimer to exclude pulmonary embolism: a prospective cohort management study.
J Thromb Haemost. 2016 Mar;14(3):504-9. doi: 10.1111/jth.13234. Epub 2016 Feb 5.

引用本文的文献

1
Medical laboratory data-based models: opportunities, obstacles, and solutions.
J Transl Med. 2025 Jul 24;23(1):823. doi: 10.1186/s12967-025-06802-x.
2
Generative artificial intelligence for general practice; new potential ahead, but are we ready?
Eur J Gen Pract. 2025 Dec;31(1):2511645. doi: 10.1080/13814788.2025.2511645. Epub 2025 Jun 6.
3
Evaluation of the Effect of Thrombolytic Therapy on Inflammatory Markers in Patients With Acute Pulmonary Embolism.
Cureus. 2024 Dec 1;16(12):e74926. doi: 10.7759/cureus.74926. eCollection 2024 Dec.
4
Changes in sarcopenia and incident cardiovascular disease in prospective cohorts.
BMC Med. 2024 Dec 31;22(1):607. doi: 10.1186/s12916-024-03841-x.
5
A novel prognostic score of recurrence for endometrial cancer patients with staging surgery.
BMC Womens Health. 2024 Dec 30;24(1):671. doi: 10.1186/s12905-024-03528-8.
6
Pulmonary Embolism: Is AI One of the Team?
Open Respir Arch. 2024 Oct 5;6(Suppl 2):100371. doi: 10.1016/j.opresp.2024.100371. eCollection 2024 Oct.

本文引用的文献

2
Ruling out pulmonary embolism across different healthcare settings: A systematic review and individual patient data meta-analysis.
PLoS Med. 2022 Jan 25;19(1):e1003905. doi: 10.1371/journal.pmed.1003905. eCollection 2022 Jan.
4
Developing more generalizable prediction models from pooled studies and large clustered data sets.
Stat Med. 2021 Jul 10;40(15):3533-3559. doi: 10.1002/sim.8981. Epub 2021 May 5.
7
Diagnosis of Pulmonary Embolism with d-Dimer Adjusted to Clinical Probability.
N Engl J Med. 2019 Nov 28;381(22):2125-2134. doi: 10.1056/NEJMoa1909159.
10
The proportion of missing data should not be used to guide decisions on multiple imputation.
J Clin Epidemiol. 2019 Jun;110:63-73. doi: 10.1016/j.jclinepi.2019.02.016. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验