Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
Chemosphere. 2023 Oct;338:139506. doi: 10.1016/j.chemosphere.2023.139506. Epub 2023 Jul 13.
In this study, a combination of column experiments, interface chemistry theory and transport model with two-site kinetics was used to systematically investigate the effect of pH on the transport of polystyrene nanoparticles (PSNPs) in porous media. The porous media containing quartz sand (QS) and three kinds of clay minerals (CMs)-kaolinite (KL), illite (IL) and montmorillonite (MT), was used in column experiments to simulate the porous media in the soil-groundwater systems. Experimental results showed that the inhibitory effect of CMs on the transport of PSNPs is weakened as pH increases. The two-dimensional (2D) surface of the DLVO interaction energy (2D-pH-DLVO) was built to calculate the interactions between PSNPs and CMs under different conditions of pH. Results suggested the inflection point of PSNP-QS, PSNP-KL, PSNP-IL and PSNP-MT are 2.42, 3.30, 2.84 and 3.69, respectively. Most importantly, there was a significant correlation between the two-site kinetic parameters related to PSNPs transport and the DLVO energy barrier (DB). The contributions of the interactions of PSNPs-PSNPs and PSNPs-minerals were determined for PSNPs transport in porous media. The critical values of pH related to the migration ability of PSNPs in porous media could be determined by a combination of column experiments, 2D-pH-DLVO and PSNPs transport model. The critical values of pH were 2.95-3.01, 3.22-3.51, 2.98-3.02, 3.31-3.33 for the migration ability of PSNPs in QS, QS + KL, QS + IL and QS + MT porous media, respectively. The stronger migration ability of PSNPs under high pH conditions is attributed to the enhanced deprotonation of the media surface and increased negative surface charge, which increases the electrostatic repulsion between PSNPs and porous media (QS, CMs). Moreover, the agglomeration of PSNPs usually is weaker and the average particle size of agglomerates is smaller under the condition of high pH, thus leading to the stronger migration ability of PSNPs under high pH conditions.
在这项研究中,我们综合使用柱实验、界面化学理论和具有双位点动力学的输运模型,系统地研究了 pH 值对聚苯乙烯纳米颗粒(PSNPs)在多孔介质中迁移的影响。实验中使用了包含石英砂(QS)和三种粘土矿物(CMs)-高岭石(KL)、伊利石(IL)和蒙脱石(MT)的多孔介质来模拟土壤-地下水系统中的多孔介质。实验结果表明,随着 pH 值的升高,CMs 对 PSNPs 迁移的抑制作用减弱。我们构建了二维(2D)DLVO 相互作用能(2D-pH-DLVO)表面来计算不同 pH 值条件下 PSNPs 与 CMs 之间的相互作用。结果表明,PSNP-QS、PSNP-KL、PSNP-IL 和 PSNP-MT 的拐点分别为 2.42、3.30、2.84 和 3.69。最重要的是,与 PSNPs 输运相关的双位点动力学参数与 DLVO 能垒(DB)之间存在显著的相关性。确定了 PSNPs 在多孔介质中迁移时 PSNPs-PSNPs 和 PSNPs-矿物相互作用的贡献。可以通过柱实验、2D-pH-DLVO 和 PSNPs 输运模型的结合来确定与 PSNPs 在多孔介质中迁移能力相关的 pH 值临界值。在 QS、QS+KL、QS+IL 和 QS+MT 多孔介质中,PSNPs 迁移能力的 pH 值临界值分别为 2.95-3.01、3.22-3.51、2.98-3.02、3.31-3.33。在高 pH 条件下 PSNPs 具有更强的迁移能力归因于介质表面去质子化增强和负表面电荷增加,这增加了 PSNPs 和多孔介质(QS、CMs)之间的静电排斥。此外,在高 pH 条件下,PSNPs 的团聚通常较弱,团聚体的平均粒径较小,从而导致 PSNPs 在高 pH 条件下具有更强的迁移能力。