National Institute of Agronomic Research of Algeria - Institut National de la Recherche Agronomique d'Algérie (INRAA), 2 route des frères Ouaddek, El Harrach, 16200, Algiers, Algeria.
Environ Monit Assess. 2023 Jul 16;195(8):962. doi: 10.1007/s10661-023-11566-2.
Soil temperature (TS) is a crucial parameter in many fields, especially agriculture. In developing countries like Algeria, the soil temperatures (TS) and the meteorological data are limited. This study investigates the use of Extreme Learning Machine (ELM) for the accurate prediction of daily ST at three different depths (30 cm, 60 cm, and 100 cm) using a minimal number of climatic inputs. The inputs used in this study include maximum and minimum air temperatures, relative humidity, and day of the year (DOY) as a representative of the temporal component. Five different combinations of inputs were used to develop ELM models and determine the best set of input variables. The ELM models were then compared with traditional methods such as multiple linear regression, artificial neural networks, and adaptive neuro-fuzzy inference system. Based on evaluation metrics such as R, RMSE, and MAPE, the ELM models with air temperatures and DOY as inputs (ELM-M0 and ELM-M3) demonstrated superior performance at all depths when compared to the other techniques. The most accurate predictions were found at a depth of 100 cm using the ELM-M3 model, which employed inputs of minimum and maximum air temperatures and DOY, with R value of 0.98, RMSE of 0.68 °C, and MAPE of 3.4%. The results demonstrate that the inclusion of DOY in the climatic dataset significantly enhances the performance and accuracy of machine learning models for ST prediction. The ELM was found to be a fast, simple, effective, and useful tool for TS prediction.
土壤温度(TS)是许多领域,特别是农业领域的一个关键参数。在像阿尔及利亚这样的发展中国家,土壤温度(TS)和气象数据是有限的。本研究探讨了使用极限学习机(ELM)在使用最少气候输入的情况下,对三个不同深度(30cm、60cm 和 100cm)的每日土壤温度(ST)进行精确预测的方法。本研究中使用的输入包括最高和最低空气温度、相对湿度和一年中的天数(DOY),以代表时间成分。使用了五种不同的输入组合来开发 ELM 模型,并确定了最佳的输入变量集。然后将 ELM 模型与传统方法(如多元线性回归、人工神经网络和自适应神经模糊推理系统)进行比较。根据 R、RMSE 和 MAPE 等评估指标,与其他技术相比,以空气温度和 DOY 为输入的 ELM 模型(ELM-M0 和 ELM-M3)在所有深度上的表现都更好。在深度为 100cm 时,使用输入为最小和最大空气温度和 DOY 的 ELM-M3 模型进行了最准确的预测,R 值为 0.98、RMSE 为 0.68°C 和 MAPE 为 3.4%。结果表明,在气候数据集中包含 DOY 可以显著提高机器学习模型对 ST 预测的性能和准确性。ELM 被发现是一种快速、简单、有效和有用的 TS 预测工具。