Suppr超能文献

利用机器学习最大限度地提高非定向活体肝供体移植物的效用。

Maximizing utility of nondirected living liver donor grafts using machine learning.

机构信息

Division of Gastroenterology and Hepatology, Department of Medicine, University of Washington, Seattle, WA, United States.

Center for Liver Investigation Fostering discovery (C-LIFE), University of Washington, Seattle, WA, United States.

出版信息

Front Immunol. 2023 Jun 29;14:1194338. doi: 10.3389/fimmu.2023.1194338. eCollection 2023.

Abstract

OBJECTIVE

There is an unmet need for optimizing hepatic allograft allocation from nondirected living liver donors (ND-LLD).

MATERIALS AND METHOD

Using OPTN living donor liver transplant (LDLT) data (1/1/2000-12/31/2019), we identified 6328 LDLTs (4621 right, 644 left, 1063 left-lateral grafts). Random forest survival models were constructed to predict 10-year graft survival for each of the 3 graft types.

RESULTS

Donor-to-recipient body surface area ratio was an important predictor in all 3 models. Other predictors in all 3 models were: malignant diagnosis, medical location at LDLT (inpatient/ICU), and moderate ascites. Biliary atresia was important in left and left-lateral graft models. Re-transplant was important in right graft models. C-index for 10-year graft survival predictions for the 3 models were: 0.70 (left-lateral); 0.63 (left); 0.61 (right). Similar C-indices were found for 1-, 3-, and 5-year graft survivals. Comparison of model predictions to actual 10-year graft survivals demonstrated that the predicted upper quartile survival group in each model had significantly better actual 10-year graft survival compared to the lower quartiles (p<0.005).

CONCLUSION

When applied in clinical context, our models assist with the identification and stratification of potential recipients for hepatic grafts from ND-LLD based on predicted graft survivals, while accounting for complex donor-recipient interactions. These analyses highlight the unmet need for granular data collection and machine learning modeling to identify potential recipients who have the best predicted transplant outcomes with ND-LLD grafts.

摘要

目的

需要优化非定向活体肝供者(ND-LLD)的肝移植分配。

材料和方法

利用 OPTN 活体供肝移植(LDLT)数据(2000 年 1 月 1 日至 2019 年 12 月 31 日),我们确定了 6328 例 LDLT(4621 例右肝,644 例左肝,1063 例左外侧叶肝)。构建随机森林生存模型,预测 3 种移植物的 10 年移植物存活率。

结果

供受者体表面积比是所有 3 个模型的重要预测因素。所有 3 个模型的其他预测因素包括:恶性诊断、LDLT 时的医疗地点(住院/ICU)和中度腹水。胆道闭锁在左肝和左外侧叶肝模型中很重要。再次移植在右肝模型中很重要。3 个模型的 10 年移植物存活率的 C 指数分别为:0.70(左外侧叶肝)、0.63(左肝)、0.61(右肝)。1 年、3 年和 5 年移植物存活率的 C 指数也相似。将模型预测与实际 10 年移植物存活率进行比较表明,每个模型的预测存活率较高的上四分位数组的实际 10 年移植物存活率明显高于较低的下四分位数组(p<0.005)。

结论

在临床环境中应用时,我们的模型可以根据预测的移植物存活率,协助识别和分层来自 ND-LLD 的潜在肝移植受者,同时考虑复杂的供受者相互作用。这些分析突出了对精细数据收集和机器学习建模的需求,以识别具有 ND-LLD 移植物最佳预测移植结果的潜在受者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78bf/10344453/d1653084a3c1/fimmu-14-1194338-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验