Division of Gastroenterology and Hepatology, Department of Medicine, University of Washington, Seattle, WA, United States.
Center for Liver Investigation Fostering discovery (C-LIFE), University of Washington, Seattle, WA, United States.
Front Immunol. 2023 Jun 29;14:1194338. doi: 10.3389/fimmu.2023.1194338. eCollection 2023.
There is an unmet need for optimizing hepatic allograft allocation from nondirected living liver donors (ND-LLD).
Using OPTN living donor liver transplant (LDLT) data (1/1/2000-12/31/2019), we identified 6328 LDLTs (4621 right, 644 left, 1063 left-lateral grafts). Random forest survival models were constructed to predict 10-year graft survival for each of the 3 graft types.
Donor-to-recipient body surface area ratio was an important predictor in all 3 models. Other predictors in all 3 models were: malignant diagnosis, medical location at LDLT (inpatient/ICU), and moderate ascites. Biliary atresia was important in left and left-lateral graft models. Re-transplant was important in right graft models. C-index for 10-year graft survival predictions for the 3 models were: 0.70 (left-lateral); 0.63 (left); 0.61 (right). Similar C-indices were found for 1-, 3-, and 5-year graft survivals. Comparison of model predictions to actual 10-year graft survivals demonstrated that the predicted upper quartile survival group in each model had significantly better actual 10-year graft survival compared to the lower quartiles (p<0.005).
When applied in clinical context, our models assist with the identification and stratification of potential recipients for hepatic grafts from ND-LLD based on predicted graft survivals, while accounting for complex donor-recipient interactions. These analyses highlight the unmet need for granular data collection and machine learning modeling to identify potential recipients who have the best predicted transplant outcomes with ND-LLD grafts.
需要优化非定向活体肝供者(ND-LLD)的肝移植分配。
利用 OPTN 活体供肝移植(LDLT)数据(2000 年 1 月 1 日至 2019 年 12 月 31 日),我们确定了 6328 例 LDLT(4621 例右肝,644 例左肝,1063 例左外侧叶肝)。构建随机森林生存模型,预测 3 种移植物的 10 年移植物存活率。
供受者体表面积比是所有 3 个模型的重要预测因素。所有 3 个模型的其他预测因素包括:恶性诊断、LDLT 时的医疗地点(住院/ICU)和中度腹水。胆道闭锁在左肝和左外侧叶肝模型中很重要。再次移植在右肝模型中很重要。3 个模型的 10 年移植物存活率的 C 指数分别为:0.70(左外侧叶肝)、0.63(左肝)、0.61(右肝)。1 年、3 年和 5 年移植物存活率的 C 指数也相似。将模型预测与实际 10 年移植物存活率进行比较表明,每个模型的预测存活率较高的上四分位数组的实际 10 年移植物存活率明显高于较低的下四分位数组(p<0.005)。
在临床环境中应用时,我们的模型可以根据预测的移植物存活率,协助识别和分层来自 ND-LLD 的潜在肝移植受者,同时考虑复杂的供受者相互作用。这些分析突出了对精细数据收集和机器学习建模的需求,以识别具有 ND-LLD 移植物最佳预测移植结果的潜在受者。