Suppr超能文献

基于 F-18 FDG PET 图像的肺癌风险预测模型的建立。

Development of lung cancer risk prediction models based on F-18 FDG PET images.

机构信息

Department of Nuclear Medicine, Keimyung University Dongsan Hospital, 1035 Dalgubeol-daero, Sindang-dong, Dalseo-gu, Daegu, Republic of Korea.

Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea.

出版信息

Ann Nucl Med. 2023 Oct;37(10):572-582. doi: 10.1007/s12149-023-01858-5. Epub 2023 Jul 17.

Abstract

OBJECTIVE

We aimed to evaluate whether the degree of F-18 fluorodeoxyglucose (FDG) uptake in the lungs is associated with an increased risk of lung cancer and to develop lung cancer risk prediction models using metabolic parameters on F-18 FDG positron emission tomography (PET).

METHODS

We retrospectively included 795 healthy individuals who underwent F-18 FDG PET/CT scans for a health check-up. Individuals who developed lung cancer within 5 years of the PET/CT scan were classified into the lung cancer group (n = 136); those who did not were classified into the control group (n = 659). The healthy individuals were then randomly assigned to either the training (n = 585) or validation sets (n = 210). Clinical factors including age, sex, body mass index (BMI), and smoking history were collected. The standardized uptake value ratio (SUVR) and metabolic heterogeneity (MH) index were obtained for the bilateral lungs. Logistic regression models including clinical factors, SUVR, and MH index were generated to quantify the probability of lung cancer development using a training set. The prediction models were validated using a validation set.

RESULTS

The lung SUVR and lung MH index in the lung cancer group were significantly higher than in the control group (p < 0.001 and p < 0.001, respectively). In the combined prediction model 1, age, sex, BMI, smoking history, and lung SUVR were significantly associated with lung cancer development (age: OR 1.07, p < 0.001; male: OR 2.08, p = 0.015; BMI: OR 0.93, p = 0.057; current or past smoker: OR 5.60, p < 0.001; lung SUVR: OR 1.13, p < 0.001). In the combined prediction model 2, age, sex, BMI, smoking history, and lung MH index showed a significant association with lung cancer development (age: OR 1.06, p < 0.001; male: OR 1.87, p = 0.045; BMI: OR 0.93, p = 0.010; current or past smoker: OR 4.78, p < 0.001; lung MH index: OR 1.33, p < 0.001). In the validation data, combined prediction models 1 and 2 exhibited very good discrimination [area under the receiver operator curve (AUC): 0.867 and 0.901, respectively].

CONCLUSIONS

The metabolic parameters on F-18 FDG PET are related to an increased risk of lung cancer. Metabolic parameters can be used as biomarkers to provide information independent of the clinical parameters, related to lung cancer risk.

摘要

目的

我们旨在评估肺部 F-18 氟脱氧葡萄糖(FDG)摄取程度是否与肺癌风险增加相关,并利用 F-18 FDG 正电子发射断层扫描(PET)的代谢参数开发肺癌风险预测模型。

方法

我们回顾性纳入了 795 名因健康检查而接受 F-18 FDG PET/CT 扫描的健康个体。在 PET/CT 扫描后 5 年内发展为肺癌的个体被归入肺癌组(n=136);未发展为肺癌的个体归入对照组(n=659)。然后,将健康个体随机分配至训练组(n=585)或验证组(n=210)。收集了包括年龄、性别、体重指数(BMI)和吸烟史在内的临床因素。获得了双侧肺的标准化摄取值比(SUVR)和代谢异质性(MH)指数。使用训练组生成包含临床因素、SUVR 和 MH 指数的逻辑回归模型,以量化肺癌发生的概率。使用验证组验证预测模型。

结果

肺癌组的肺部 SUVR 和肺部 MH 指数明显高于对照组(p<0.001 和 p<0.001)。在联合预测模型 1 中,年龄、性别、BMI、吸烟史和肺部 SUVR 与肺癌发生显著相关(年龄:OR 1.07,p<0.001;男性:OR 2.08,p=0.015;BMI:OR 0.93,p=0.057;当前或过去吸烟者:OR 5.60,p<0.001;肺部 SUVR:OR 1.13,p<0.001)。在联合预测模型 2 中,年龄、性别、BMI、吸烟史和肺部 MH 指数与肺癌发生显著相关(年龄:OR 1.06,p<0.001;男性:OR 1.87,p=0.045;BMI:OR 0.93,p=0.010;当前或过去吸烟者:OR 4.78,p<0.001;肺部 MH 指数:OR 1.33,p<0.001)。在验证数据中,联合预测模型 1 和 2 表现出非常好的区分度[受试者工作特征曲线下面积(AUC):0.867 和 0.901]。

结论

F-18 FDG PET 的代谢参数与肺癌风险增加相关。代谢参数可作为生物标志物,提供与肺癌风险相关的独立于临床参数的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验