International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
J Am Chem Soc. 2023 Aug 2;145(30):16383-16390. doi: 10.1021/jacs.3c01989. Epub 2023 Jul 18.
Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal-organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin-MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host-guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties.
蛋白质在治疗、医学诊断和化学催化等行业发挥着重要作用。然而,它们在细胞环境之外的脆弱和动态性质往往限制了它们的潜力。将蛋白质封装在固体材料中已被广泛探索,作为提高其稳定性和便于处理的途径。然而,蛋白质与合理设计的合成宿主之间的相互作用的实验研究仍然需要改进。在这项工作中,我们利用金属-有机框架(MOFs)的可调性和结晶性,开发了一系列具有不同化学性质的结晶定义的蛋白质宿主。通过系统研究,我们确定了蛋白质封装的主要机制,并开发了一种具有良好定制性能的宿主材料,以有效封装蛋白质泛素。具体来说,在我们的介孔宿主中,我们发现泛素封装在热力学上是有利的。具有有利静电相互作用的更亲水的封装环境诱导焓有利的泛素-MOF 相互作用,并且较高的 pH 条件降低了颗粒内扩散障碍,两者都导致更高的蛋白质负载。我们的发现为蛋白质与固体基质之间的主客体相互作用提供了基本的理解,并为指导未来蛋白质宿主材料的设计提供了新的见解,以实现最佳的蛋白质负载。本工作中使用的 MOF 修饰技术还展示了一种简便的方法来开发易于定制的材料,以封装具有不同表面性质的蛋白质。