Suppr超能文献

新型基于人工智能的深度学习勾画算法在放射治疗中的可行性评估。

Feasibility evaluation of novel AI-based deep-learning contouring algorithm for radiotherapy.

机构信息

Department of Radiation Oncology, Christiana Care Helen F. Graham Cancer Center, Newark, Delaware, USA.

Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA.

出版信息

J Appl Clin Med Phys. 2023 Nov;24(11):e14090. doi: 10.1002/acm2.14090. Epub 2023 Jul 18.

Abstract

PURPOSE

To evaluate the clinical feasibility of the Siemens Healthineers AI-Rad Companion Organs RT VA30A (Organs-RT) auto-contouring algorithm for organs at risk (OARs) of the pelvis, thorax, and head and neck (H&N).

METHODS

Computed tomography (CT) datasets from 30 patients (10 pelvis, 10 thorax, and 10 H&N) were collected. Four sets of OARs were generated on each scan, one set by Organs-RT and the others by three experienced users independently. A physician (expert) then evaluated each contour by assigning a score from the following scale: 1-Must Redo, 2-Major Edits, 3-Minor Edits, 4-Clinically usable. Using the highest-scored OAR from the human users as a reference, the contours generated by Organs-RT were evaluated via Dice Similarity Coefficient (DSC), Hausdorff Distance (HDD), Mean Distance to Agreement (mDTA), Volume comparison, and visual inspection. Additionally, each human user recorded the time to delineate each structure set and time-saving efficiency was measured.

RESULTS

The average DSC obtained for the pelvic OARs ranged between (0.81 ± 0.06) and (0.94 ± 0.03) . (0.75 ± 0.09) to for the thoracic OARs and (0.66 ± 0.07) to (0.83 ± 0.04) for the H&N. The average HDD in cm for the pelvis cohort ranged between (0.95 ± 0.35) to (3.62 ± 2.50) , (0.42 ± 0.06) to (2.09 ± 2.00) for the thoracic set and to (1.50 ± 0.50) for the H&N region. The time-saving efficiency was 67% for H&N, 83% for pelvis, and 84% for thorax. 72.5%, 82%, and 50% of the pelvis, thorax, and H&N OARs were scored as clinically usable by the expert, respectively.

CONCLUSIONS

The highest agreement registered between OARs generated by Organs-RT and their respective references was for the bladder, heart, lungs, and femoral heads, with an overall DSC≥0.92. The poorest agreement was for the rectum, esophagus, and lips, with an overall DSC⩽0.81. Nonetheless, Organs-RT serves as a reliable auto-contouring tool by minimizing overall contouring time and increasing time-saving efficiency in radiotherapy treatment planning.

摘要

目的

评估西门子医疗的 AI-Rad Companion Organs RT VA30A(Organs-RT)自动勾画算法在骨盆、胸部和头颈部(H&N)的危及器官(OARs)中的临床可行性。

方法

收集了 30 名患者(10 名骨盆、10 名胸部和 10 名 H&N)的计算机断层扫描(CT)数据集。在每个扫描中生成了四组 OARs,一组由 Organs-RT 生成,另外三组由三位有经验的用户独立生成。然后,一位医生(专家)根据以下评分标准对每个轮廓进行评估:1-必须重做,2-主要编辑,3-次要编辑,4-临床可用。使用人类用户中得分最高的 OAR 作为参考,使用 Dice 相似系数(DSC)、Hausdorff 距离(HDD)、平均同意距离(mDTA)、体积比较和视觉检查评估 Organs-RT 生成的轮廓。此外,每位用户记录了勾画每个结构集的时间,并测量了节省时间的效率。

结果

骨盆 OARs 的平均 DSC 范围为(0.81 ± 0.06)至(0.94 ± 0.03)。(0.75 ± 0.09)至 胸部 OARs 和(0.66 ± 0.07)至(0.83 ± 0.04)用于 H&N。骨盆队列的平均 HDD 以厘米为单位,范围在(0.95 ± 0.35)至(3.62 ± 2.50),(0.42 ± 0.06)至(2.09 ± 2.00)用于胸部组,而 H&N 区域为 至(1.50 ± 0.50)。H&N 的节省时间效率为 67%,骨盆为 83%,胸部为 84%。专家分别将 72.5%、82%和 50%的骨盆、胸部和 H&N OARs 评为临床可用。

结论

Organs-RT 生成的 OAR 与其各自参考物之间的最高一致性是膀胱、心脏、肺和股骨头,整体 DSC≥0.92。一致性最差的是直肠、食管和嘴唇,整体 DSC≤0.81。尽管如此,Organs-RT 还是一种可靠的自动勾画工具,通过最大限度地减少整体勾画时间并提高放疗计划的节省时间效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ff/10647981/fce61eea76a6/ACM2-24-e14090-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验