Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
J Adv Res. 2024 Jun;60:201-214. doi: 10.1016/j.jare.2023.07.005. Epub 2023 Jul 17.
Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers.
We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells.
We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells.
Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC = 6 nM) and the most potent inducer of apoptosis (IC = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62.
These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.
蛋白质的翻译后修饰通过可逆乙酰化来调节关键的生物过程。组蛋白去乙酰化酶(HDACs)催化蛋白质去乙酰化,并且在肿瘤中经常失调。这促使了 HDAC 抑制剂(HDACi)的发展。这些表观遗传药物调节蛋白质乙酰化,消除肿瘤细胞,并被批准用于治疗血液癌症。
我们旨在鉴定新型、纳摩尔级别的 HDACi,其对现有药物具有更高的效力,并对癌症相关的 I 类 HDAC(HDAC1、-2、-3、-8)具有选择性。此外,我们还希望确定这些药物如何控制细胞凋亡-自噬相互作用。我们使用人白血病细胞和胚胎肾来源的细胞作为测试系统。
我们合成了新型嘧啶-羟肟酸 HDACi(KH9/KH16/KH29),并进行了体外活性测定和它们与 HDACs 的直接结合的分子建模。我们通过流式细胞术和免疫印迹分析这些 HDACi 如何影响白血病细胞的命运、乙酰化和蛋白质表达。我们使用公开的 DepMap 数据库中的 CRISPR-Cas9 筛选来确定人类白血病细胞中的敏感性因素。
新型 HDACi 对 I 类 HDAC 具有纳摩尔级别的活性。这些药物优于临床使用的羟肟酸类 HDACi SAHA(伏立诺他)。在 KH 系列化合物中,KH16(yanostat)是最有效的 HDAC3 抑制剂(IC = 6 nM),也是诱导白血病细胞凋亡的最有效抑制剂(IC = 110 nM;p < 0.0001)。KH16 虽然可以保留胚胎肾来源的细胞。对敲除筛选的全球数据分析证实,HDAC3 是 115 种不同谱系的人类血液癌细胞的依赖性因子,与肿瘤抑制因子 p53 的突变无关。KH16 改变了促凋亡和抗凋亡蛋白的表达,阻止了细胞周期的进展,并诱导了自噬蛋白 ULK1 和 p62 的 caspase 依赖性加工。
这些数据表明,HDACs 通过抑制白血病细胞中的细胞凋亡来稳定自噬蛋白。HDAC3 似乎是一种用于药物干预的有效的抗癌靶标。