Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA.
Nat Commun. 2023 Jul 19;14(1):4346. doi: 10.1038/s41467-023-40006-5.
The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.
三维(3D)组织的生物制造可以通过细胞间相互作用的时空控制来受益。生物打印虽然有可能实现这种控制,但对于具有保守细胞结构且容易发生塑性变形的类器官来说并不适用。在这里,我们开发了一种名为“空间图案化类器官转移(SPOT)”的平台,它由负载氧化铁纳米颗粒的水凝胶和磁化的 3D 打印机组成,可实现类器官的受控提升、运输和沉积。我们发现纤维素纳米纤维既是封装具有磁性纳米颗粒的类器官的理想生物材料,也是一种剪切稀化、自修复的支撑水凝胶,可以保持类器官的空间定位,以促进组装体的生成。我们利用 SPOT 来创建精确排列的组装体,这些组装体由人多能干细胞衍生的神经类器官和患者来源的神经胶质瘤类器官组成。通过这样做,我们证明了 SPOT 平台构建能够重现关键发育过程和疾病病因的组装体的潜力。