Suppr超能文献

使用蛋白活性和患者表型矩阵预测异染性脑白质营养不良的疾病严重程度。

Predicting disease severity in metachromatic leukodystrophy using protein activity and a patient phenotype matrix.

机构信息

Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA.

Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

出版信息

Genome Biol. 2023 Jul 21;24(1):172. doi: 10.1186/s13059-023-03001-z.

Abstract

BACKGROUND

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by mutations in the arylsulfatase A gene (ARSA) and categorized into three subtypes according to age of onset. The functional effect of most ARSA mutants remains unknown; better understanding of the genotype-phenotype relationship is required to support newborn screening (NBS) and guide treatment.

RESULTS

We collected a patient data set from the literature that relates disease severity to ARSA genotype in 489 individuals with MLD. Patient-based data were used to develop a phenotype matrix that predicts MLD phenotype given ARSA alleles in a patient's genotype with 76% accuracy. We then employed a high-throughput enzyme activity assay using mass spectrometry to explore the function of ARSA variants from the curated patient data set and the Genome Aggregation Database (gnomAD). We observed evidence that 36% of variants of unknown significance (VUS) in ARSA may be pathogenic. By classifying functional effects for 251 VUS from gnomAD, we reduced the incidence of genotypes of unknown significance (GUS) by over 98.5% in the overall population.

CONCLUSIONS

These results provide an additional tool for clinicians to anticipate the disease course in MLD patients, identifying individuals at high risk of severe disease to support treatment access. Our results suggest that more than 1 in 3 VUS in ARSA may be pathogenic. We show that combining genetic and biochemical information increases diagnostic yield. Our strategy may apply to other recessive diseases, providing a tool to address the challenge of interpreting VUS within genotype-phenotype relationships and NBS.

摘要

背景

异染性脑白质营养不良(MLD)是一种溶酶体贮积病,由芳基硫酸酯酶 A 基因(ARSA)突变引起,并根据发病年龄分为三个亚型。大多数 ARSA 突变体的功能影响仍然未知;需要更好地了解基因型-表型关系,以支持新生儿筛查(NBS)并指导治疗。

结果

我们从文献中收集了一个患者数据集,该数据集将 489 名 MLD 患者的疾病严重程度与 ARSA 基因型相关联。使用基于患者的数据集来开发表型矩阵,该矩阵根据患者基因型中 ARSA 等位基因预测 MLD 表型,准确率为 76%。然后,我们使用基于质谱的高通量酶活性测定法来探索来自经过编辑的患者数据集和基因组聚集数据库(gnomAD)的 ARSA 变体的功能。我们观察到有证据表明 ARSA 中 36%的未知意义变异(VUS)可能是致病性的。通过对 gnomAD 中的 251 个 VUS 进行功能分类,我们将总体人群中意义不明基因型(GUS)的发生率降低了 98.5%以上。

结论

这些结果为临床医生提供了另一种工具,可预测 MLD 患者的疾病进程,确定患有严重疾病风险高的个体,以支持获得治疗。我们的结果表明,ARSA 中的超过 1/3 的 VUS 可能是致病性的。我们表明,将遗传和生化信息相结合可提高诊断产量。我们的策略可能适用于其他隐性疾病,为解释基因型-表型关系和 NBS 中的 VUS 提供了一种工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5c/10360315/18eac64b0a6f/13059_2023_3001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验