Suppr超能文献

PARP1 通过与其他 DNA 结构结合在维持基因组稳定性方面的多效作用。

Multifaceted Role of PARP1 in Maintaining Genome Stability Through Its Binding to Alternative DNA Structures.

机构信息

UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.

UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA.

出版信息

J Mol Biol. 2024 Jan 1;436(1):168207. doi: 10.1016/j.jmb.2023.168207. Epub 2023 Jul 20.

Abstract

Alternative DNA structures that differ from the canonical B-form of DNA can arise from repetitive sequences and play beneficial roles in many cellular processes such as gene regulation and chromatin organization. However, they also threaten genomic stability in several ways including mutagenesis and collisions with replication and/or transcription machinery, which lead to genomic instability that is associated with human disease. Thus, the careful regulation of non-B-DNA structure formation and resolution is crucial for the maintenance of genome integrity. Several protein factors have been demonstrated to associate with alternative DNA structures to facilitate their removal, one of which is the ADP-ribose transferase (ART) PARP1 (also called ADP-ribosyltransferase diphtheria toxin-like 1 or ARTD1), a multifaceted DNA repair enzyme that recognizes single- and double-stranded DNA breaks and synthesizes chains of poly (ADP-ribose) (PAR) to recruit DNA repair proteins. It is now well appreciated that PARP1 recognizes several nucleic acid structures beyond DNA lesions, including stalled replication forks, DNA hairpins and cruciforms, R-loops, and DNA G-quadruplexes (G4 DNA). In this review, we summarize the current evidence of a direct association of PARP1 with each of these aforementioned alternative DNA structures, as well as discuss the role of PARP1 in the prevention of non-B-DNA structure-induced genetic instability. We will focus on the mechanisms of the recognition and binding by PARP1 to each alternative structure and the structure-based stimulation of PARP1 catalytic activity upon binding. Finally, we will discuss some of the outstanding gaps in the literature and offer speculative insight for questions that remain to be experimentally addressed.

摘要

与 DNA 的典型 B 型结构不同的替代 DNA 结构可以来自重复序列,并在许多细胞过程中发挥有益作用,例如基因调控和染色质组织。然而,它们也通过多种方式威胁基因组稳定性,包括突变和与复制和/或转录机制的碰撞,这导致与人类疾病相关的基因组不稳定性。因此,非 B-DNA 结构形成和解析的精细调节对于维持基因组完整性至关重要。已经证明几种蛋白质因子与替代 DNA 结构相关联,以促进其去除,其中一种是 ADP-核糖基转移酶(ART)PARP1(也称为 ADP-ribosyltransferase 白喉毒素样 1 或 ARTD1),这是一种多方面的 DNA 修复酶,可识别单链和双链 DNA 断裂,并合成多聚(ADP-核糖)(PAR)链以招募 DNA 修复蛋白。现在人们已经充分认识到,PARP1 除了 DNA 损伤之外,还可以识别几种核酸结构,包括停滞的复制叉、DNA 发夹和十字形结构、R 环和 DNA G-四链体(G4 DNA)。在这篇综述中,我们总结了 PARP1 与上述每种替代 DNA 结构直接相关的现有证据,并讨论了 PARP1 在预防非 B-DNA 结构诱导的遗传不稳定性中的作用。我们将重点讨论 PARP1 对每种替代结构的识别和结合的机制,以及结合后对 PARP1 催化活性的基于结构的刺激。最后,我们将讨论文献中的一些突出差距,并对仍需实验解决的问题提供推测性见解。

相似文献

1
Multifaceted Role of PARP1 in Maintaining Genome Stability Through Its Binding to Alternative DNA Structures.
J Mol Biol. 2024 Jan 1;436(1):168207. doi: 10.1016/j.jmb.2023.168207. Epub 2023 Jul 20.
2
PARP1 associates with R-loops to promote their resolution and genome stability.
Nucleic Acids Res. 2023 Mar 21;51(5):2215-2237. doi: 10.1093/nar/gkad066.
4
The multifaceted roles of PARP1 in DNA repair and chromatin remodelling.
Nat Rev Mol Cell Biol. 2017 Oct;18(10):610-621. doi: 10.1038/nrm.2017.53. Epub 2017 Jul 5.
5
Characterization of PARP1 binding to c-KIT1 G-quadruplex DNA: Insights into domain-specific interactions.
Biophys Chem. 2024 Dec;315:107330. doi: 10.1016/j.bpc.2024.107330. Epub 2024 Sep 25.
8
Regulation of PARP1 and its apoptotic variant activity by single-stranded DNA.
FEBS J. 2023 Sep;290(18):4533-4542. doi: 10.1111/febs.16875. Epub 2023 Jun 5.
9
Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
Nucleic Acids Res. 2019 May 7;47(8):3811-3827. doi: 10.1093/nar/gkz120.
10
PAR recognition by PARP1 regulates DNA-dependent activities and independently stimulates catalytic activity of PARP1.
FEBS J. 2023 Nov;290(21):5098-5113. doi: 10.1111/febs.16907. Epub 2023 Jul 24.

引用本文的文献

1
SELEX identifies high-affinity RNA targets for chromatin-binding proteins PARP1 and MeCP2.
iScience. 2025 Aug 6;28(9):113299. doi: 10.1016/j.isci.2025.113299. eCollection 2025 Sep 19.
2
FANCA Deficiency Induces Oncogenic R-Loop Dependent Synthetic Lethality with PARP1 Inhibitors.
Res Sq. 2025 Jul 3:rs.3.rs-6080272. doi: 10.21203/rs.3.rs-6080272/v1.
3
Targeting DNA damage sensors for cancer therapy.
DNA Repair (Amst). 2025 May;149:103841. doi: 10.1016/j.dnarep.2025.103841. Epub 2025 May 2.
4
Targeting PCNA/PARP1 axis inhibits the malignant progression of hepatocellular carcinoma.
Front Pharmacol. 2025 Apr 17;16:1571786. doi: 10.3389/fphar.2025.1571786. eCollection 2025.
6
BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments.
Nature. 2025 Apr;640(8060):1103-1111. doi: 10.1038/s41586-025-08749-x. Epub 2025 Mar 26.
7
PARP2 Catalytic Activity Is Allosterically Stimulated by Binding to the c-KIT1 G-Quadruplex.
ACS Omega. 2025 Feb 24;10(8):8767-8776. doi: 10.1021/acsomega.5c00724. eCollection 2025 Mar 4.
8
Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer.
DNA Repair (Amst). 2024 Dec;144:103775. doi: 10.1016/j.dnarep.2024.103775. Epub 2024 Oct 19.
9
The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging.
Int J Mol Sci. 2024 Oct 11;25(20):10926. doi: 10.3390/ijms252010926.
10
Leveraging PARP-1/2 to Target Distant Metastasis.
Int J Mol Sci. 2024 Aug 20;25(16):9032. doi: 10.3390/ijms25169032.

本文引用的文献

1
PARP1 Regulates Circular RNA Biogenesis though Control of Transcriptional Dynamics.
Cells. 2023 Apr 14;12(8):1160. doi: 10.3390/cells12081160.
3
PARP1 associates with R-loops to promote their resolution and genome stability.
Nucleic Acids Res. 2023 Mar 21;51(5):2215-2237. doi: 10.1093/nar/gkad066.
4
G4-interacting proteins endangering genomic stability at G4 DNA-forming sites.
Biochem Soc Trans. 2023 Feb 27;51(1):403-413. doi: 10.1042/BST20221018.
5
WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures.
EMBO J. 2023 Feb 1;42(3):e111998. doi: 10.15252/embj.2022111998. Epub 2022 Dec 21.
6
PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair.
PLoS Genet. 2022 Dec 13;18(12):e1010545. doi: 10.1371/journal.pgen.1010545. eCollection 2022 Dec.
7
PARP1 proximity proteomics reveals interaction partners at stressed replication forks.
Nucleic Acids Res. 2022 Nov 11;50(20):11600-11618. doi: 10.1093/nar/gkac948.
8
Dynamic alternative DNA structures in biology and disease.
Nat Rev Genet. 2023 Apr;24(4):211-234. doi: 10.1038/s41576-022-00539-9. Epub 2022 Oct 31.
9
PARP1: Liaison of Chromatin Remodeling and Transcription.
Cancers (Basel). 2022 Aug 27;14(17):4162. doi: 10.3390/cancers14174162.
10
A Double-Edged Sword: The Two Faces of PARylation.
Int J Mol Sci. 2022 Aug 29;23(17):9826. doi: 10.3390/ijms23179826.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验