Suppr超能文献

优化分段回归模型以研究干预效果的过渡期。

Optimized segmented regression models for the transition period of intervention effects.

机构信息

Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Center for Migrant Health Policy, Sun Yat-sen University, Guangzhou, China.

出版信息

Glob Health Res Policy. 2023 Jul 24;8(1):29. doi: 10.1186/s41256-023-00312-3.

Abstract

BACKGROUND

The interrupted time series (ITS) design is a widely used approach to examine the effects of interventions. However, the classic segmented regression (CSR) method, the most popular statistical technique for analyzing ITS data, may not be adequate when there is a transitional period between the pre- and post-intervention phases.

METHODS

To address this issue and better capture the distribution patterns of intervention effects during the transition period, we propose using different cumulative distribution functions in the CSR model and developing corresponding optimized segmented regression (OSR) models. This study illustrates the application of OSR models to estimate the long-term impact of a national free delivery service policy intervention in Ethiopia.

RESULTS

Regardless of the choice of transition length ([Formula: see text]) and distribution patterns of intervention effects, the OSR models outperformed the CSR model in terms of mean square error (MSE), indicating the existence of a transition period and the validity of our model's assumptions. However, the estimates of long-term impacts using OSR models are sensitive to the selection of L, highlighting the importance of reasonable parameter specification. We propose a data-driven approach to select the transition period length to address this issue.

CONCLUSIONS

Overall, our OSR models provide a powerful tool for modeling intervention effects during the transition period, with a superior model fit and more accurate estimates of long-term impacts. Our study highlights the importance of appropriate statistical methods for analyzing ITS data and provides a useful framework for future research.

摘要

背景

间断时间序列(ITS)设计是一种广泛用于检验干预效果的方法。然而,经典的分段回归(CSR)方法是分析 ITS 数据最常用的统计技术,但在干预前后阶段之间存在过渡期时,它可能并不适用。

方法

为了解决这个问题,并更好地捕捉过渡期内干预效果的分布模式,我们建议在 CSR 模型中使用不同的累积分布函数,并开发相应的优化分段回归(OSR)模型。本研究说明了 OSR 模型在估计埃塞俄比亚国家免费分娩服务政策干预的长期影响中的应用。

结果

无论选择过渡期长度([Formula: see text])和干预效果的分布模式如何,OSR 模型在均方误差(MSE)方面均优于 CSR 模型,这表明存在过渡期,并且我们的模型假设是有效的。然而,使用 OSR 模型估计长期影响的估计值对 L 的选择很敏感,这突出了合理参数规范的重要性。我们提出了一种数据驱动的方法来选择过渡期长度,以解决这个问题。

结论

总体而言,我们的 OSR 模型为在过渡期内建模干预效果提供了一个强大的工具,具有更好的模型拟合度和更准确的长期影响估计。我们的研究强调了适当的统计方法对于分析 ITS 数据的重要性,并为未来的研究提供了一个有用的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验